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Preface to the Third Edition

While the first edition of this textbook was based on a one-year course in
computational physics with a rather limited scope, its extent has been increased
substantially in the third edition, offering the possibility to select from a broader
range of computer experiments and to deepen the understanding of the important
numerical methods. The computer experiments have always been a central part of
my concepts for this book. Since Java applets, which are very convenient otherwise,
have become more or less deprecated and their usage in a browser is no longer
recommended for security issues, I decided to use standalone Java programs instead
and to rewrite all of the old examples. These can also been edited and compiled
with the “netbeans” environment and offer the same possibilities to generate a
graphical user interface in short time.

The major changes in the third edition are as follows.

In the first part, a new chapter is devoted to the time-frequency analysis of
experimental data. While the classical Fourier transform allows the calculation
of the spectrum of a stationary signal, it is not so useful for nonstationary signals
with significant variation of the momentaneous frequency distribution. Application
of the Fourier transformation to short time windows, a method which is known as
short-time Fourier transformation (STFT), allows analyzing the frequency content
of a signal as a function of time. Good time resolution, of course, always comes
together with a loss in frequency resolution (this is well known as “uncertainty
principle”). The STFT method uses the same window for the whole spectrum,
therefore the absolute time and frequency resolution is the same for low- and
high-frequency components and the time resolution is limited by the period of the
lowest frequencies of interest. Analysis of a signal with wavelets, on the other hand,
uses shorter windows for the higher frequencies and keeps the relative frequency
resolution constant while increasing the time resolution of the high-frequency
components. The continuous wavelet transform can be very time consuming since it
involves a convolution integral and is highly redundant. The discrete wavelet
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viii Preface to the Third Edition

transform uses a finite number of orthogonal basis function and can be performed
much faster by calculating scalar products. It is closely related to multiresolution
analysis which analyzes a signal in terms of a basic approximation and details
of increasing resolution. Such methods are very popular in signal processing,
especially of audio and image data but also in medical physics and seismology. The
principles of the construction of orthogonal wavelet families are explained in detail,
but without too many mathematical proofs. Several popular kinds of wavelets are
discussed, like those by Haar, Meyer and Daubechies and their application is
explored in a series of computer experiments.

In the second part, two new chapters have been added. First I included a dis-
cussion of the advection equation. Several methods to solve the one-dimensional
problem are discussed from very simple straightforward differencing to quite
sophisticated Galerkin-Taylor methods. The properties of these methods are
demonstrated in computer experiments, as well by programs in the problems section
as by numerous figures in the text. The extension to more dimensions by finite
volume methods and dimensional splitting are discussed. A profound understanding
of the advection equation and its numerical solution is also the basis for the more
complex convection and Navier—Stokes equations.

Another chapter was added to the application of variational methods for quan-
tum systems. The variational principle is very useful to calculate the groundstate
energy. Two different types of computer experiments are performed. First we use
the variational quantum Monte Carlo method (VQMC) for small atomic and
molecular systems like the Helium atom and the Hydrogen molecule. We use trial
functions which treat electron correlation explicitly by introducing a Jastrow factor
which depends on the electron-electron distances. Such trial functions lead to
nonseparable multidimensional integrals which can be efficiently calculated with
the VQMC method. A second series of computer experiments studies
exciton-phonon coupling in molecular aggregates which are of large interest for
energy transfer in artificial and biological systems. The non-Born-Oppenheimer
character of the wavefunction makes it necessary to optimize a large number of
parameters. Different kinds of trial functions are applied to aggregates of up to
100 molecules to study the localization of the lowest state (so called
“self-trapping”).

Apart from these newly added chapters, further improvements have been made
throughout the book. The chapter on random numbers now discusses in more detail
the principles of modern random number generators, especially the xorshift, mul-
tiply with carry (MWC) and complementary multiply with carry (CMWC) methods.
Nonstationary iterative Krylov-space methods for systems of linear equations are
discussed systematically with a focus on the conjugate gradients (CG) and general
minimum residual (GMRES) methods. The QR method for eigenvalue problems is
now discussed in much more detail together with its connection to the power
iteration method and the Krylov-space methods by Arnoldi and Lanczos.
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Finally, I included a computer experiment simulating the transition between two
states with wave packet dynamics, which is very helpful to understand the semi-
classical approximation, especially the Landau—Zener model, which is the subject
of another computer experiment.

Garching, Germany Philipp O.J. Scherer
March 2017




Preface to the Second Edition

This textbook introduces the main principles of computational physics, which
include numerical methods and their application to the simulation of physical
systems. The first edition was based on a one-year course in computational physics
where I presented a selection of only the most important methods and applications.
Approximately one-third of this edition is new. I tried to give a larger overview
of the numerical methods, traditional ones as well as more recent developments. In
many cases it is not possible to pin down the “best” algorithm, since this may
depend on subtle features of a certain application, the general opinion changes from
time to time with new methods appearing and computer architectures evolving, and
each author is convinced that his method is the best one. Therefore I concentrated
on a discussion of the prevalent methods and a comparison for selected examples.
For a comprehensive description I would like to refer the reader to specialized
textbooks like “Numerical Recipes” or elementary books in the field of the engi-
neering sciences.

The major changes are as follows.

A new chapter is dedicated to the discretization of differential equations and the
general treatment of boundary value problems. While finite differences are a natural
way to discretize differential operators, finite volume methods are more flexible if
material properties like the dielectric constant are discontinuous. Both can be seen
as special cases of the finite element methods which are omnipresent in the engi-
neering sciences. The method of weighted residuals is a very general way to find the
“best” approximation to the solution within a limited space of trial functions. It is
relevant for finite element and finite volume methods but also for spectral methods
which use global trial functions like polynomials or Fourier series.

Traditionally, polynomials and splines are very often used for interpolation.
Iincluded a section on rational interpolation which is useful to interpolate functions
with poles but can also be an alternative to spline interpolation due to the recent
development of barycentric rational interpolants without poles.

The chapter on numerical integration now discusses Clenshaw-Curtis
and Gaussian methods in much more detail, which are important for practical
applications due to their high accuracy.
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xii Preface to the Second Edition

Besides the elementary root finding methods like bisection and Newton—
Raphson, also the combined methods by Dekker and Brent and a recent extension
by Chandrupatla are discussed in detail. These methods are recommended in most
text books. Function minimization is now discussed also with derivative free
methods, including Brent’s golden section search method. Quasi-Newton methods
for root finding and function minimizing are thoroughly explained.

Eigenvalue problems are ubiquitous in physics. The QL-method, which is very
popular for not too large matrices is included as well as analytic expressions for
several differentiation matrices.

The discussion of Singular value decomposition was extended and its applica-
tion to low rank matrix approximation and linear fitting is discussed.

For the integration of equations of motion (i.e. of initial value problems) many
methods are available, often specialized for certain applications. For completeness,
I included the predictor-corrector methods by Nordsieck and Gear which have been
often used for molecular dynamics and the backward differentiation methods for
stiff problems.

A new chapter is devoted to molecular mechanics, since this is a very important
branch of current computational physics. Typical force field terms are discussed as
well as the calculation of gradients which are necessary for molecular dynamics
simulations.

The simulation of waves now includes three additional two-variable methods
which are often used in the literature and are based on generally applicable schemes
(leapfrog, Lax—Wendroff, Crank—Nicolson).

The chapter on simple quantum systems was rewritten. Wave packet simulation
has become very important in theoretical physics and theoretical chemistry. Several
methods are compared for spatial discretization and time integration of the
one-dimensional Schroedinger equation. The dissipative two-level system is used to
discuss elementary operations on a Qubit.

The book is accompanied by many computer experiments. For those readers
who are unable to try them out, the essential results are shown by numerous figures.

This book is intended to give the reader a good overview over the fundamental
numerical methods and their application to a wide range of physical phenomena.
Each chapter now starts with a small abstract, sometimes followed by necessary
physical background information. Many references, original work as well as spe-
cialized text books, are helpful for more deepened studies.

Garching, Germany Philipp O.J. Scherer
February 2013




Preface to the First Edition

Computers have become an integral part of modern physics. They help to acquire,
store and process enormous amounts of experimental data. Algebra programs have
become very powerful and give the physician the knowledge of many mathe-
maticians at hand. Traditionally physics has been divided into experimental physics
which observes phenomena occurring in the real world and theoretical physics
which uses mathematical methods and simplified models to explain the experi-
mental findings and to make predictions for future experiments. But there is also a
new part of physics which has an ever growing importance. Computational physics
combines the methods of the experimentalist and the theoretician. Computer sim-
ulation of physical systems helps to develop models and to investigate their
properties.

Computers in Physics

Experimental Physics
data collection, storage and processing

data storage and data management
email,www,ftp

C ication, data tr issi

Symbolic Computing
algebra programs

Visualisation & presentation
Computer graphics, processing of text and images

Theoretical Physics Computational Physics
approximative solutions Computer models & experiments

This book is a compilation of the contents of a two-part course on computational
physics which I have given at the TUM (Technische Universitit Miinchen) for
several years on a regular basis. It attempts to give the undergraduate physics
students a profound background in numerical methods and in computer simulation
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methods but is also very welcome by students of mathematics and computational
science who want to learn about applications of numerical methods in physics. This
book may also support lecturers of computational physics and bio-computing. It
tries to bridge between simple examples which can be solved analytically and more
complicated but instructive applications which provide insight into the underlying
physics by doing computer experiments.

The first part gives an introduction into the essential methods of numerical
mathematics which are needed for applications in physics. Basic algorithms are
explained in detail together with limitations due to numerical inaccuracies.
Mathematical explanations are supplemented by numerous numerical experiments.

The second part of the book shows the application of computer simulation
methods for a variety of physical systems with a certain focus on molecular bio-
physics. The main object is the time evolution of a physical system. Starting from a
simple rigid rotor or a mass point in a central field, important concepts of classical
molecular dynamics are discussed. Further chapters deal with partial differential
equations, especially the Poisson-Boltzmann equation, the diffusion equation,
nonlinear dynamic systems and the simulation of waves on a 1-dimensional string.
In the last chapters simple quantum systems are studied to understand e.g. expo-
nential decay processes or electronic transitions during an atomic collision.
A two-state quantum system is studied in large detail, including relaxation pro-
cesses and excitation by an external field. Elementary operations on a quantum bit
(Qubit) are simulated.

Basic equations are derived in detail and efficient implications are discussed
together with numerical accuracy and stability of the algorithms. Analytical results
are given for simple test cases which serve as a benchmark for the numerical
methods. Many computer experiments are provided realized as Java applets which
can be run in the web browser. For a deeper insight the source code can be studied
and modified with the free “netbeans™ environment.

Garching, Germany Philipp O.J. Scherer
April 2010

'www.netbeans.org.
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Numerical Methods



Chapter 1
Error Analysis

Several sources of errors are important for numerical data processing:

Experimental uncertainty: Input data from an experiment have a limited precision.
Instead of the vector of exact values X the calculation uses X+ Ax, with an uncertainty
AX. This can lead to large uncertainties of the calculated results if an unstable
algorithm is used or if the unavoidable error inherent to the problem is large.

Rounding errors: The arithmetic unit of a computer uses only a subset of the real
numbers, the so called machine numbers A C R. The input data as well as the
results of elementary operations have to be represented by machine numbers whereby
rounding errors can be generated. This kind of numerical error can be avoided in
principle by using arbitrary precision arithmetics' or symbolic algebra programs.
But this is unpractical in many cases due to the increase in computing time and
memory requirements.

Truncation errors: Results from more complex operations like square roots or
trigonometric functions can have even larger errors since series expansions have
to be truncated and iterations can accumulate the errors of the individual steps.

1.1 Machine Numbers and Rounding Errors

Floating point numbers are internally stored as the product of sign, mantissa and a
power of 2. According to the IEEE754 standard [1] single, double and quadruple
precision numbers are stored as 32, 64 or 128 bits (Table 1.1).

The sign bit s is O for positive and 1 for negative numbers. The exponent b is
biased by adding E which is half of its maximum possible value (Table 1.2).> The
value of a number is given by

1 For instance the open source GNU MP bignum library.
2In the following the usual hexadecimal notation is used which represents a group of 4 bits by one
of the digits 0, 1,2, 3,4,5,6,7,8,9,A,B,C,D,E, F.
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Table 1.1 Binary floating-point formats
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Format Sign Exponent Hidden bit Fraction Precision €y
Float s bo---by 1 ag---ax 2724 = 59658
Double s bo---bio 1 ag - - - as 2753 = 1.11E"16
Quadruple | s bo---big 1 ap---ap 27113 = 9 3=

Table 1.2 Exponent bias E

Decimal value Binary value Hexadecimal value Data type
127190 1111111, $3F Single
10239 1111111111, $ 3FF Double
163839 1111111111111, $3FFF Quadruple

Table 1.3 Special double precision numbers

Hexadecimal value

Symbolic value

$ 000 0000000000000 +0
$ 080 00000000000000 -0
$ 7FF 0000000000000 +inf
$ FFF 0000000000000 -inf
$ 7FF 0000000000001 - - - $ 7FF FFFFFFFFFFFFF NAN

$ 001 0000000000000

Min_Normal

$ 7FE FFFFFFFFFFFFF Max_Normal
$ 000 0000000000001 Min_Subnormal
$ 000 FFFFFFFFFFFFF Max_Subnormal

x=(=)" xa x2'7E,

(1.1

The mantissa a is normalized such that its first bit is 1 and its value is between 1 and 2

100020 <a =< 1.111--- 12 < 1002 2210.

(1.2)

Since the first bit of a normalized floating point number always is 1, it is not
necessary to store it explicitly (hidden bit or J-bit). However, since not all numbers
can be normalized, only the range of exponents from $001 - - - $7FE is used for
normalized numbers. An exponent of $000 signals that the number is not normalized
(zero is an important example, there exist even two zero numbers with different sign)
whereas the exponent $7FF is reserved for infinite or undefined results (Table 1.3).
The range of normalized double precision numbers is between

Min_Normal = 2.2250738585072014 x 1073
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and
Max_Normal = 1.7976931348623157E x 10°8,

Example
Consider the following bit pattern which represents a double precision number:

$4059000000000000.

The exponent is 100 00000101, —011 1111 1111, = 110, and the mantissa includ-
ing the J-bitis 1 1001 0000 0000 - - -,. Hence the decimal value is

1.5625 x 2% = 100.

Input numbers which are not machine numbers have to be rounded to the nearest
machine number. This is formally described by a mapping h — A

x — rd(x)

with the property?

|x —rd(x)| <|x —g|forall g € A. (1.3)

For the special case that x is exactly in the middle between two successive machine
numbers, a tie-breaking rule is necessary. The simplest rules are to round up always
(round-half-up) or always down (round-half-down). However, these are not sym-
metric and produce a bias in the average round-off error. The IEEE-754 standard
[1] recommends the round-to-nearest-even method, i.e. the least significant bit of
the rounded number should always be zero. Alternatives are round-to-nearest-odd,
stochastic rounding and alternating rounding.

The cases of exponent overflow and exponent underflow need special attention:

Whenever the exponent b has the maximum possible value b = b, and a =
1.11---11 has to be rounded to a’ = 10.00---0, the rounded number is not a
machine number and the result is £ inf.

Numbers in the range 2Pmn > |x| > 2Pwn~" can be represented with loss of
accuracy by denormalized machine numbers. Their mantissa cannot be normalized
since it is a < 1 and the exponent has the smallest possible value b = by,;,. Even
smaller numbers with |x| < 27/+b=in have to be rounded to 30.

3Sometimes rounding is replaced by a simpler truncation operation which, however leads to signif-
icantly larger rounding errors.
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—T 1 T 1 | | | =
1.00x2 ! 1.00 1.01 1.10 1.11 1.00x21

Fig. 1.1 (Round to nearest) Normalized machine numbers with + = 3 binary digits are shown.
Rounding to the nearest machine number produces a round-off error which is bounded by half the
spacing of the machine numbers

The maximum rounding error for normalized numbers with ¢ binary digits

ad=s5sx2""E xlaa - -a_ (1.4)
is given by (Fig.1.1)
la—a| <2V x27! (1.5)

and the relative error is bounded by

rd(x) —x
x

2”x2b<
T a| x2b T

271, (1.6)

The error bound determines the relative machine precision®

e =271 (1.7)
and the rounding operation can be described by
rd(x) = x(1 + ¢) with |e] < ey. (1.8)

The round-off error takes its maximum value if the mantissa is close to 1. Consider
a number

x=1+4¢.
If ¢ < ey then rd(x) = 1 whereas for ¢ > &, rounding gives rd(x) = 1 4+ 2!~/

(Fig. 1.2). Hence ¢y, is given by the largest number ¢ for which rd(1.0 +¢) = 1.0
and is therefore also called unit roundoff.

4 Also known as machine epsilon.
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1.2 Numerical Errors of Elementary Floating Point Operations

Fig. 1.2 (Unit round off) 1.000000 -
gty : 1.000000 -+ 0
+[0.000000 -0 01111111

-0
1.000000 -+ 0

e=gy,
..0

—{1.000000 -0

+/0.000000 - 10000000

1.000000 -
ey —[1.000000 --- 1
+10.000000 -0 |10000001

1.2 Numerical Errors of Elementary Floating Point
Operations

Even for two machine numbers x, y € A the results of addition, subtraction, multi-
plication or division are not necessarily machine numbers. We have to expect some
additional round-off errors from all these elementary operations [2]. We assume
that the results of elementary operations are approximated by machine numbers as
precisely as possible. The IEEE754 standard [1] requires that the exact operations
X+ y,x —y,x Xy, x +y are approximated by floating point operations A — A
with the property:

fly(x,y) =rd(x +y)
flo(x,y) =rd(x —y)
Sl(x,y) =rd(x xy)
flo(x,y)=rd(x +y). (1.9)

1.2.1 Numerical Extinction

For an addition or subtraction one summand has to be denormalized to line up the
exponents (for simplicity we consider only the case x > 0, y > 0)

x+y= ax2b*‘_E + ayZh"_E = (a, + a),2b)'_b'*)2b*_E. (1.10)

If the two numbers differ much in their magnitude, numerical extinction can happen.
Consider the following case:

y < 2bmE 0ot (1.11)

a,2b b < 271,




The mantissa of the exact sum is
a, + ay2b>"b<‘ =l.ay-- 10106y Bi_y.
Rounding to the nearest machine number gives
rdx +y) =2 x (laz -+ ) = x
since

100135+ B,_1 —0] <[0.011---1] = 0.1 —0.00- - -01
1001535+ B_y — 1] > [0.01 — 1| = 0.11.

Consider now the case
y <xx 277 =g, x 2Bl < pb Bt
For normalized numbers the mantissa is in the interval
I <lay| <2
hence we have
EM

rdx +y) =xif 2 <21 = M
X 2

Especially for x = 1 we have

rd(1+y)=1ify <27 =0.00---0,_;1,000- - -

1 Error Analysis

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

27" could be rounded to 0 or to 2!~ since the distance is the same |27/ — 0] =

|27t _ 217t| —2-t

The smallest machine number with f1, (1, ) > 1liseithere =0.00---1,0--- =
27"ore = 0.00---1,0---01p_; = 27/(1 + 2!~"). Hence the machine precision
em can be determined by looking for the smallest (positive) machine number ¢ for

which fl;(1,e) > 1.

1.2.2 Addition

Consider the sum of two floating point numbers

y = X1 + X3.

(1.19)
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First the input data have to be approximated by machine numbers:

x; —>rd(x) =x1(14+¢y)
Xy —> rd(xz) = Xz(l +52) (120)

The addition of the two summands may produce another error « since the result has
to be rounded. The numerical result is

y = fli(rd(x1), rd(x2)) = (xi(1 +&1) + x2(1 + £2))(1 + ). (1.21)
Neglecting higher orders of the error terms we have in first order

Y =x1 +x2 +x161 + X282 + (x1 + x2) (1.22)
and the relative error of the numerical sum is

y—y X1 X2

= g1+ e+ a. (1.23)
y X1+ x2 X1+ x2

If x; & —x, then numerical extinction can produce large relative errors and uncer-
tainties of the input data can be strongly enhanced.

1.2.3 Multiplication

Consider the multiplication of two floating point numbers
Y =X X X3. (1.24)

The numerical result is

y = fli(rd(x)), rd(x2)) = x;(1+e)xo(1 +e2) (1 +p) ~ x1x2(1 1 +e2+ p)
(1.25)

with the relative error

%:HEIMW. (1.26)

The relative errors of the input data and of the multiplication just add up to the total
relative error. There is no enhancement. Similarly for a division
X

y="= (1.27)
X2
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the relative error is

yy;yzl—l—sl—ez—i-u. (1.28)

1.3 Error Propagation

Consider an algorithm consisting of a sequence of elementary operations. From the
set of input data which is denoted by the vector

X = (X1 X) (1.29)
a set of output data is calculated

Y= Ym)- (1.30)

Formally this can be denoted by a vector function

y =X (1.31)

which can be written as a product of » simpler functions representing the elementary
operations

0 =" x D oM, (1.32)

Starting with x intermediate results X; = (x;1, - - - X;5,,) are calculated until the output
data y result from the last step:

xi = ¢V (x)

x; = @ (x1)

X—1 = Sp(r_l)(xr72)
y =" (x,-1). (1.33)
In the following we analyze the influence of numerical errors onto the final results.
We treat all errors as small quantities and neglect higher orders. Due to round-off

errors and possible experimental uncertainties the input data are not exactly given
by x but by

X + Ax. (1.34)
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The first step of the algorithm produces the result

X; = rd(e"V (x + Ax)). (1.35)
Taylor series expansion gives in first order

X = (‘P(l)(x) + Dcp(l)AX) A+ E)+--- (1.36)

with the partial derivatives

Oxn ., Oxn
Ox) Ox,
DV = (_gx”) =1 : - (1.37)
X axlul &Ylu]
ox1 " Ox,

and the round-off errors of the first step

e
E = . (1.38)

elh
The error of the first intermediate result is
Ax; =X —x; = DV Ax + oV (%) E;. (1.39)

The second intermediate result is

X, = (pP &) (1 + E) = 9@ (x) 4 Axy) (1 + E»)
=% (1 + Ey) + D@ DoV Ax + DpPx | E| (1.40)

with the error
AX> = X Er + DP DV Ax + Do Px, E;. (1.41)

Finally the error of the result is

Ay =YE, + Do ... DeWAX + D" ... DpPx E| + - -- D%, E,_;.
(1.42)

The product of the matrices Do - - - D! is the matrix which contains the deriv-
atives of the output data with respect to the input data (chain rule)
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0X| ax,,

Do=Dp" - -.DpV =| : .. |. (1.43)
[
0X| Z)x,,

The first two contributions to the total error do not depend on the way in which the
algorithm is divided into elementary steps in contrary to the remaining summands.
Hence the inevitable error which is inherent to the problem can be estimated as [2]

dyi

Ax; 1.44
ox; |Ax;] (1.44)

n
Ay = eylyil +
j=1

or in case the error of the input data is dominated by the round-off errors |Ax;| <
emlx;l

0y

n
am, ,
ANy = eylyil +em D ox;

j=1

1)1 (1.45)

Additional errors which are smaller than this inevitable error can be regarded as
harmless. If all errors are harmless, the algorithm can be considered well behaved.

1.4 Stability of Iterative Algorithms

Often iterative algorithms are used which generate successive values starting from
an initial value x( according to an iteration method

Xjt1 = f(Xj), (146)
for instance to solve a large system of equations or to approximate a time evolution
X; ~ Xx(j At). Consider first a linear iteration equation which can be written in matrix
form as

Xj+1 = AXj. (147)
If the matrix A is the same for all steps we have simply

x; = A/x. (1.48)

Consider the unavoidable error originating from errors Ax of the start values:

X; = AV(xo + A%) = Alxo + AV Ax. (1.49)
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The initial errors Ax can be enhanced exponentially if A has at least one eigenvalue®

A with [A] > 1. On the other hand the algorithm is conditionally stable if for all
eigenvalues |A| < 1 holds. For a more general nonlinear iteration

Xjt+1 = p(X;) (1.50)
the error propagates according to

X1 = p(Xo) + DpAx
X2 = o(x1) = p(p(X0)) + (Dp)* Ax

X; = @(p- - p(x0) + (D)’ Ax. (1.51)

The algorithm is conditionally stable if all eigenvalues of the derivative matrix D¢
have absolute values [\| < 1.

1.5 Example: Rotation

Consider a simple rotation in the complex plane. The equation of motion

Z=lwz (1.52)
obviously has the exact solution

(1) = zpe™". (1.53)
As a simple algorithm for numerical integration we use a time grid

tj=jAr j=0,12--. (1.54)
zj = z(t)) (1.55)

and iterate the function values
Zj+1 =Zj+2(lj)=(1+iwAI)Zj. (1.56)

Since

11+ iwAt] = V1 +w?A2 > 1 (1.57)

>The eigenvalues of A are solutions of the eigenvalue equation Ax = Ax (Chap. 10).
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uncertainties in the initial condition will grow exponentially and the algorithm is not
stable. A stable method is obtained by taking the derivative in the middle of the time
interval (p. 296)

(o220 i 1 2
. y ) TIwE 2

and making the approximation (p. 297)

t —_
* 2

( At) _2(t) +z(t + Ar)
Z ) ~ -

This gives the implicit equation

j+1+ 2z

) Z
Zj+1 =2j HiwAt (1.58)
which can be solved by
]  fedt
Zj+1 = TZA[Z_,'. (1.59)
1=
Now we have
war | = —==1 (1.60)

and the calculated orbit is stable.

1.6 Truncation Error

The algorithm in the last example is stable but of course not perfect. Each step
produces an error due to the finite time step. The exact solution

_ ioar o wrAr AP
z(t + Ar) = z(t)e =z 1 +iwAt + (1.61)

2 6

is approximated by

iwAt
2
_ iwAr

z(t + Ar) ~ z(¢)
1 2
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—oof1 4980 (1 4 A w? A iw3At3+ (L62)
—° 2 2 4 8 ‘

W2 At? n —iw3Ar
2 4

which deviates from the exact solution by a term of the order O(Af3), hence the

local error order of this algorithm is O (At®) which is indicated by writing

(1.63)

= z(t)(l +iwAr —

| 4 e
2(t 4+ At) = z(t)szA, + 0(AP). (1.64)
=

Integration up to a total time 7 = N At accumulates a global error of the order
NAt =T A

Problems

Problem 1.1 Machine Precision

In this computer experiment we determine the machine precision ¢,,. Starting with a
value of 1.0, x is divided repeatedly by 2 until numerical addition of 1 and x = 2~¥
gives 1. Compare single and double precision calculations.

Problem 1.2 Maximum and Minimum Integers

Integers are used as counters or to encode elements of a finite set like characters or
colors. There are different integer formats available which store signed or unsigned
integers of different length (Table 1.4). There is no infinite integer and addition of 1
to the maximum integer gives the minimum integer.

In this computer experiment we determine the smallest and largest integer num-
bers. Beginning with / = 1 we add repeatedly 1 until the condition 7 + 1 > [
becomes invalid or subtract repeatedly 1 until / — 1 < I becomes invalid. For the
64 bit long integer format this takes too long. Here we multiply alternatively / by 2
until / — 1 < I becomes invalid. For the character format the corresponding ordinal
number is shown which is obtained by casting the character to an integer.

Table 1.4 Maximum and minimum integers

Java format Bit length Minimum Maximum

Byte 8 —128 127

Short 16 —32768 32767

Integer 32 —2147483647 2147483648

Long 64 —9223372036854775808 | 9223372036854775807
Char 16 0 65535
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Problem 1.3 Truncation Error

This computer experiment approximates the cosine function by a truncated Taylor
series

n
max 2n X 2 x4 6

X
cos(x) A Myeos(x, fimax) = D (=)' “ow = 1= = S = o e (165)
= (2n)! 2 24 720

in the interval —7/2 < x < /2. The function mycos(x, nn.x) 1S numerically
compared to the intrinsic cosine function.
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Interpolation

Experiments usually produce a discrete set of data points (X;, f;) which represent
the value of a function f(X) for a finite set of arguments {Xg . ..X,}. If additional
data points are needed, for instance to draw a continuous curve, interpolation is
necessary. Interpolation also can be helpful to represent a complicated function by a
simpler one or to develop more sophisticated numerical methods for the calculation
of numerical derivatives and integrals. In the following we concentrate on the most
important interpolating functions which are polynomials, splines and rational func-
tions. Trigonometric interpolation is discussed in Chap. 7. An interpolating function
reproduces the given function values at the interpolation points exactly (Fig. 2.1).
The more general procedure of curve fitting, where this requirement is relaxed, is
discussed in Chap. 11.

The interpolating polynomial can be explicitly constructed with the Lagrange
method. Newton’s method is numerically efficient if the polynomial has to be evalu-
ated at many interpolating points and Neville’s method has advantages if the poly-
nomial is not needed explicitly and has to be evaluated only at one interpolation
point.

Polynomials are not well suited for interpolation over a larger range. Spline
functions can be superior which are piecewise defined polynomials. Especially cubic
splines are often used to draw smooth curves. Curves with poles can be represented
by rational interpolating functions whereas a special class of rational interpolants
without poles provides a rather new alternative to spline interpolation.

2.1 Interpolating Functions

Consider the following problem: Given are n + 1 sample points (x;, f;) ,i =0---n
and a function of x which depends on n + 1 parameters a;:

D(x;ag---ay). 2.1
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18 2 Interpolation

Fig. 2.1 (Interpolating
function) The interpolating D(x)
function ® (x) reproduces a
given data set ®(x;) = f;
and provides an estimate of
the function f(x) between ¢ f 3 f 4
the data points f 2

)éo k1 xé Xg X, Xg X
The parameters are to be determined such that the interpolating function has the
proper values at all sample points (Fig.2.1)

Q(xl;a().an)z\fl l=0'n (2.2)

An interpolation problem is called linear if the interpolating function is a linear
combination of functions

D(x;a0---a,) =agPo(x) + a1 P1(x) +---a,D,(x). (2.3)

Important examples are

e polynomials

ap+ayx +---apx” 24
e trigonometric functions

ao + a1e” + are¥* + .- - q, e (2.5)
e spline functions which are piecewise polynomials, for instance the cubic spline

S() = o + fi(x —x) + %@ —x)’ 6 —x)? x5 <x <xp. (26)

Important examples for nonlinear interpolating functions are

e rational functions

po+ pix+ - pyx
g0+ q1x + - gnx¥

2.7)
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e exponential functions
ape™™ + ajeMt 4. (2.8)

where amplitudes a; and exponents )\; have to be optimized.

2.2 Polynomial Interpolation

For n + 1 sample points (x;, f;), i =0---n, x;=/ x; there exists exactly one
interpolating polynomial of degree n with

pxi) =fi, i=0---n. (2.9

2.2.1 Lagrange Polynomials

Lagrange polynomials [3] are defined as

(x —x0) -+ (x —x;—)(x — Xxj41) -+ (x — Xxp)

Li(x) = . (2.10)
(i —x0) -+ O = Xx—1) (% — Xip1) -+ (6 — xp)
They are of degree n and have the property
L; (xx) = dix. (2.11)
The interpolating polynomial is given in terms of Lagrange polynomials by
p(x)=ifiLi(x)=iﬁ H =k (2.12)
: : S Xi — Xk
i=0 =0 k=0, i

2.2.2 Barycentric Lagrange Interpolation

With the polynomial

w(x) = H(x —x) (2.13)
i=0
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the Lagrange polynomial can be written as

w(x) 1
x = x;i [Ti—o i (i — x0)

Li(x) =

which, introducing the Barycentric weights [4]

1
B HZ:O,k;[i(xi — X)

Ui

becomes the first form of the barycentric interpolation formula

u;
Li(x) =wk) .

X — X

The interpolating polynomial can now be evaluated according to

u;

p) = fiLix) =w®) D f;
i=0 i=0

X — X;

2 Interpolation

(2.14)

2.15)

(2.16)

(2.17)

Having computed the weights u;, evaluation of the polynomial only requires O (n)
operations whereas calculation of all the Lagrange polynomials requires O (n?) oper-

ations. Calculation of w(x) can be avoided considering that

n n ul
pi(x) = ;u-(x) = w<x>§ P

is a polynomial of degree n with

pix)=1i=0...n.
But this is only possible if
pix) =1

Therefore

o) = 28 _ Zico fizhy
p1(x) Z?:o xTx,.

(2.18)

(2.19)

(2.20)

2.21)

which is known as the second form of the barycentric interpolation formula.
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2.2.3 Newton’s Divided Differences

Newton’s method of divided differences [5] is an alternative for efficient numerical
calculations [6]. Rewrite

F) = o) + LTI (2.22)
X — Xo
With the first order divided difference
flx, xo] = M (2.23)
X — Xo

this becomes

s xol = fln, xo] 4 LXd = Sl vl o (2.24)

X — X1

and with the second order divided difference

flx, xol = flx1, x0]  f(x) = f(x0) S x) — f(xo0)

flx, xo, n] = X — Xy T —x)x—x1) (X1 —x0)(x —x1)
_ fx) [ f(xo0)
(x —x0)(x —x1) (1 —x0)(x1 —x)  (x0 —x1)(x0 — x)
(2.25)
we have

JF(x) = f(xo) + (x — x0) flx1, X0l + (x —x0)(x —x1) flx, %0, x1].  (2.26)
Higher order divided differences are defined recursively by

flxixa---x21] = flxa-- - x21%]

X1 — Xr

(2.27)

Slxixz - x_1x,] =

They are invariant against permutation of the arguments which can be seen from the
explicit formula

_ £ )
] =S S 28
Flxixz - x,] ; oG — ) (2.28)

Finally we have

fx) = pkx)+qXx) (2.29)
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with a polynomial of degree n

p(x) = f(xo) + flx1, xol(x — x0) + flx2x1x0](x — x0)(x — x1) + - -

st flpXa—r o xol(x — x0)(x — x1) - (X — X,—1) (2.30)

and the function

q(x) = flxxy - xol(x —xp) -+ (x —xp). (2.31)

Obviously g(x;) =0 ,i =0---n, hence p(x) is the interpolating polynomial.
Algorithm

The divided differences are arranged in the following way:

fo
S Sflxoxi]

o=t flxn—2xp-1] flxn—3xp—2Xn—11 ... flxo...xn-1]
fn f[xn—lxn] f[xn—an—lxn] et f[xl t 'xn—lxn] f[X())Cl t 'xn—lxn]
(2.32)

Since only the diagonal elements are needed, a one-dimensional data array #[0] - - -
t[n] is sufficient for the calculation of the polynomial coefficients:

for i:=0 to n do begin
t[i]:=f[il;
for k:=i-1 downto 0 do
t[k]:=(t[k+1]-t[k])/(x[i]-x[kD);
a[i]:=t[0];
end;

The value of the polynomial is then evaluated by

p:=a[n];
for i:=n-1 downto 0 do
p:=p*(x-x[iD+ali];

2.2.4 Neville Method

The Neville method [7] is advantageous if the polynomial is not needed explicitly
and has to be evaluated only at one point. Consider the interpolating polynomial for
the points x - - - x¢, which will be denoted as Py ;... (x). Obviously



2.2 Polynomial Interpolation 23

Potox(x) = (x — xo)Pl---k(x))Ck—_(io— xx) Po.k—1(x) (2.33)

since for x = xj - - - x;_; the right hand side is

(x —x0) f(x) — (x —x) f(x) _

). (2.34)
X — X0
For x = xo we have
—G0 m WS _ (2.35)
X — X0
and finally for x = x;,
(e = x) f() _ £, (2.36)
Xk — X0
Algorithm:

We use the following scheme to calculate P ;..., (x) recursively:

Py
Py Py
P P Poro (2.37)

Pn Pnfl,n Pan,nfl,n e P01~~~n

The first column contains the function values P;(x) = f;. The value Py;...,, can be
calculated using a 1-dimensional data array p[0] - - - p[n]:

for i:=0 to n do begin

plil:=fTil;

for k:=i-1 downto 0 do
plk]:=(plk+11*(x-x[kD-p[k]*(x-x[i]) )/(x[k]-x[i]);
end;

f:=p[0];

2.2.5 Error of Polynomial Interpolation

The error of polynomial interpolation [8] can be estimated with the help of the
following theorem:

If f(x) is n+ 1 times differentiable then for each X there exists ¢ within the
smallest interval containing X as well as all the x; with
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Fig. 2.2 (Interpolating 3
polynomial) The interpolated
function (solid curve) and
the interpolating polynomial
(broken curve) for the
example (2.40) are compared

0 2 4 6
X
VARI(3)
q(x) = H(x — )T (2.38)
From a discussion of the function
wix) =[] —x) (2.39)

it can be seen that the error increases rapidly outside the region of the sample points
(extrapolation is dangerous!). As an example consider the sample points (Fig.2.2)

3
f(x) = sin(x) x =0, g T, ; 2. (2.40)

The maximum interpolation error is estimated by(]| f (D < 1)

1 35
[f(x) —p(x)| < Iw(x)lm <10~ 0.3 (2.41)

whereas the error increases rapidly outside the interval 0 < x < 27 (Fig.2.3).

2.3 Spline Interpolation

Polynomials are not well suited for interpolation over a larger range. Often spline
functions are superior which are piecewise defined polynomials [9, 10]. The simplest
case is a linear spline which just connects the sampling points by straight lines:

Yi+1 — Vi
Xitl — X

pi(x) =y + (x —x) (2.42)
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Fig. 2.3 (Interpolation

error) The polynomial w(x)

is shown for the example 100
(2.40). Its roots x; are given
by the x values of the sample
points (circles). Inside the
interval xq - - - x4 the absolute
value of w is bounded by
|w(x)| < 35 whereas outside -100
the interval it increases very

rapidly

o (X)
(=

s(x) = pi(x) where x; < x < x;11. (2.43)

The most important case is the cubic spline which is given in the interval x; < x <
Xi+1 by

pi(x) = a; + Bi(x —x) + 7 (x —x;)* + 6 (x —x;) . (2.44)

We want to have a smooth interpolation and assume that the interpolating function
and their first two derivatives are continuous. Hence we have for the inner boundaries:

i=0,---n—1

Pi(Xiy1) = pit1(Xit1) (2.45)
Pi(Xix1) = pip (Xigp1) (2.46)
pi (xix1) = pf (xig). (2.47)

We have to specify boundary conditions at xy and x,,. The most common choice are
natural boundary conditions s”(xo) = s”(x,) = 0, but also periodic boundary con-
ditions s” (xg) = 5" (x,), s'(x0) = s'(x,), s(x0) = s(x,) or given derivative values
s'(xo) and s’(x,,) are often used. The second derivative is a linear function [2]

pi(x) = 27; + 66;(x — x;) (2.48)
which can be written using 4; 1y = x;41 — x; and M; = s”(x;) as

, X — X Xi — X
P;(X)=Mi+1( )+Mi( 1 =)
hivi

i=0---n—1 (2.49)
hit1

since
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it — i
plx) = M= = 5" (xy)
hit
(Xig1 — xi)
pl(xXip1) = Mip———= = 5" (xi11).

hiti

Integration gives with the two constants A; and B;

(x —x;)? (xip1 —x)?
! = M,‘ — i + A,‘
Pi(x) 2 2hiq
(x —x;)° (Xig1 — x)?
i = Ml' =+ Mi Ai — X Bi.
pi(x) +1 Shie, Ohie 4+ A;i(x —x;) +

From s(x;) = y; and s(x;11) = y;+1 we have

h?,,
Mi%"‘Bi =i

h?,
Mi+l% + Aihiy1 + Bi = yi
and hence
h?
Bi =y — M~
Y 6
Yir1 =y hip
A,‘ = — (M, — M;).
i 5 (M4 )

Now the polynomial is

M; M;
pi(x) = = (x —x;)° — (x —xi —hip)> + Ai(x —x;) + Bi

6hi+] 6hi+l
M; M,; M;

3 i+1 i i 2

=(x—-x — + 3hip1(x —x;
(=) <6h,-+1 6hi+1) Gy e )

M; M;
—x) (A — =—-3h? Bi+ ——h .
+('x X ) ( 6hl+1 l+1) + + 6h1+] i+1

Comparison with
Pi(x) = @i + Bi(x —x) + 7% (x —x)* + 8 (x — x)°
gives

M; ,
o = B + ?hi+1 =i

(2.50)

2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)
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2.61)

(2.62)

(2.63)

hiv 1 M; i1 — Vi M, 2M,;
5= A — +1Mi Vi )’_hiHL
2 iy 6
Yi = >
5 — My — M;
l 6hiv1
Finally we calculate M; from the continuity of s'(x). Substituting for A; in p;(x) we
have
(x —x;)? (Xis1 — X | Vi1 — Y hip
pix) = My - M= e — = (M — M))
2hi 1 2hit it 6

and from p]_, (x;) = p}(x;) it follows

hi  yi—yia1
M= 22 T, — M

3 + W 6( 1)

hivi | Yie1 =Y hig
=M-——+——— M — M,
> + hit 6 (M1 )

hi hi hit hivi Y=Y Yi— Vi
M=t + M =t + M2 4 = -

i 3 + M;_ 6 + M, 3 + +1 6 hi+1 hi

which is a system of linear equations for the M;. Using the abbreviations

i
" hit+hig
hi
i = 1-— )\,’ = —
hi + hiq
d = 6 ()’i+1 — Vi Vi~ yil)
" hithig hit hi

we have
wiMiy +2M; + AiMiyy =d; i=1---n—1.
We define for natural boundary conditions

M=0 p, =0 dp=0 d,=0

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

2.71)
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and in case of given derivative values

0 H 0 h

6

(

Y1 — Yo

hy

The system of equations has the form

2 Xo
Hr 2 A
H2 2 A
Mn—1 2 )\nfl
pn o 2

For periodic boundary conditions we define

n

and the system of equations is (with M,, = M)

B hl +hn

Mn =1—

2 N 1
2 2 Ao
Hy 23
Hn—1 2 /\n—l
An Mo 2

A

d, =

2 Interpolation

/ 6 ’ Yn Yn—1
) mb i)
(2.72)
- _ do -
d
d»
= (2.73)
dnfl
6 VL=V Yn T dnol) o
hl + hn hl hn .
— _ di -
d>
ds
= . (2.75)
dn—l

All this tridiagonal systems can be easily solved with a special Gaussian elimination
method (Sects.5.3 and 5.4)

2.4 Rational Interpolation

The use of rational approximants allows to interpolate functions with poles, where
polynomial interpolation can give poor results [2]. Rational approximants without
poles [11] are also well suited for the case of equidistant x;, where higher order
polynomials tend to become unstable. The main disadvantages are additional poles
which are difficult to control and the appearance of unattainable points. Recent
developments using the barycentric form of the interpolating function [11-13] helped
to overcome these difficulties.
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2.4.1 Padé Approximant

29

The Padé approximant [14] of order [M / N]to afunction f (x) is the rational function

Py(x)  po+pix+... puxM

ONGx)  qo+qix+...qnxV

Ryn(x) =
which reproduces the McLaurin series (the Taylor series at x = 0) of
f(x) =ao+a1x+a2x2+...
up to order M + N, i.e.
f£(0) = R(0)
d d
P f0) = e R(0)

dM+N) (M4N)

oo O = 35 RO).

Multiplication gives

po+pix+-+pux™ = (o + qix + - +gnx™)ao +arx + ...

and collecting powers of x we find the system of equations

Po = qodo
P1 = qod1 + q1a9
P2 = qoaz + a1q1 + apqz

Pm = qoam +am-191 + - -+ aogm
0 =gqgoap+1 +qray + -+ gnapy—n+1

0 =qoamsn + qrapin—1 + - +gnay
where
a,=0 forn <0

qgj =0 forj>N.

)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

2.81)

(2.82)



30 2 Interpolation

Example: Calculate the [3, 3] approximant to tan(x).
The Laurent series of the tangent is

1, 2
t = x4+ — 2.83
an(x) x+3x +15x + (2.83)

We set gy = 1. Comparison of the coefficients of the polynomial

1 2
o+ pix + pax’ + p3x’ = (1 + qix + g2x” + g3x?) (x +300+ Exs)
(2.84)

gives the equations

:po=0

pr=1

C P2 =4

e 1

‘P3=qrt 3 (2.85)
Y10 =g+ 3

5.0 2 41

10 —E+§C]2

6:0 = Zqi+ 3.

We easily find

2 1

= = :0 = —— [
P2=4q1 =43 q2 P3 15

5 (2.86)

and the approximant of order [3, 3] is

R x—£x?
33="T"5 5~
1— 2x2

(2.87)

This expression reproduces the tangent quite well (Fig.2.4). Its pole at /10/2 =~
1.581 is close to the pole of the tangent function at 7/2 &~ 1.571.

2.4.2 Barycentric Rational Interpolation

If the weights of the barycentric form of the interpolating polynomial (2.21) are taken
as general parameters u; =¥ 0 it becomes a rational function

n u;
Zi:O -fl X—X;
zn Uj
i=0 x—x;

R(x) = (2.88)
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Fig. 2.4 (Padé
approximation to tan(x))
The Padé approximant (2.87,
dash dotted curve)
reproduces the tangent (full
curve) quite well

tan(x)

which obviously interpolates the data points since

lim R(x) = f;. (2.89)
With the polynomials'
n n n w(x)
=2 wifi [] c—xp=2 wfir=>
i=0 Jj=0; i i=0

n

Q(X)=iu,- H (x—xj)=zn:u,» w(x)

X — X
i=0  j=0; /i i=0 !

a rational interpolating function is given by>

P(x)

R = .
=50

Obviously there are infinitely different rational interpolating functions which differ
by the weights u = (ug, u; ...u,) (an example is shown in Fig.2.5). To fix the
parameters u;, additional conditions have to be imposed.

2.4.2.1 Rational Interpolation of Order [M, N]

One possibility is to assume that P(x) and Q(x) are of order < M and < N,
respectively with M + N = n. This gives n additional equations for the 2(n + 1)

lw@) = []I_g(x — x;) as in (2.39).
2]t can be shown that any rational interpolant can be written in this form.
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R(x)

-1 . . | .
-1 0 1 2 3 4

Fig. 2.5 (Rational interpolation) The data points (1, %), (2, %), @3, 1]—0) are interpolated by several

rational functions. The [1, 1] approximant (2.95) corresponding to u = (5, —20, 15) is shown by

. 2_ - .
the solid curve, the dashed curve shows the function R(x) = % which is obtained for

u = (1, 1, 1) and the dash dotted curve shows the function R(x) = % which follows for

u = (1, —1, 1) and has no real poles

polynomial coefficients. The number of unknown equals 7 + 1 and the rational inter-
polant is uniquely determined up to a common factor in numerator and denominator.

Example Consider the data points (1) = 1, f(2) = 1, f(3) = 5.

The polynomials are

1 1 1
P@x) = suolr =2)(x = 3) + gur(x = Dlx = 3) + pualx = Hix = 2)

3 1 5 4 3 1 1 1 2
=3ug+ -uy+ -up + | —zup— -uyp — —uz | x+ *M0+§M1+Eu2 X

5 5 2 5 10 2
(2.90)
Q) =uolx —2)(x =3) +u1(x — Dx —3) +ua(x — D(x —2)
= 6ug +3uj + 2un + [—5ug — 4uy — 3unlx + [uo + uy + uz]x>. 2.91)
To obtain a [1, 1] approximant we have to solve the equations
! +1 + ! =0 (2.92)
20T s T T '
ug+u; +u, =0 (2.93)

which gives

Uy = 314() up = —4M0 (294)
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and thus

6

1
2U) — cUX 6 —
R(x)=2321_35702 22

= . 2.95
2upx 10x ( )

General methods to obtain the coefficients u; for a given data set are described in
[12, 13]. They also allow to determine unattainable points corresponding to u; = 0
and to locate the poles. Without loss of generality it can be assumed [13] that M > N .

Let P(x) be the unique polynomial which interpolates the product f(x)Q (x)

P(xi)) =f(x)Qx) i=0...M. (2.96)

Then from (2.31) we have

Sx)O(x) = P(x) = (fQ)lxo- - xm, x1(x — xp) -+ (x — xp). (2.97)
Setting

x=x i=M+1,...n (2.98)
we have

FNO@) — P(xi) = (f Q)Xo ... xa, Xi)(xi — Xo) - .. (x — Xp1) (2.99)

which is zero if P(x;)/Q(x;) = f; fori =0, ...n.Butthen
(fOlxo...xp,xi1=0 i=M+1,...n. (2.100)

The polynomial Q(x) can be written in Newtonian form (2.30)

N -l
QW) => v [[x—xp) =w+vix—x0)+-+vN&x —x0)...(x —xy_1).
i=0 j=0
(2.101)
With the abbreviation
gix)=x—x; j=0...N (2.102)

we find

3The opposite case can be treated by considering the reciprocal function values 1/f (x;).
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_SOgx) £
k=0...M.i [Tt i Cric = xr) k=0...M,i i j it ks j ot = )

= fIX0 - Xj 1, X1 - XM Xi] (2.103)

(fgplxo...xp, %1 =

which we apply repeatedly to (2.100) to get the system of n — M = N equations for
N + 1 unknowns

N
D viflxp XX xi]=0 i=M+1...n (2.104)
j=0

from which the coefficients v/; can be found by Gaussian elimination up to a scaling
factor. The Newtonian form of Q(x) can then be converted to the barycentric form
as described in [6].

2.4.2.2 Rational Interpolation without Poles

Polynomial interpolation of larger data sets can be ill behaved, especially for the case
of equidistant x —values. Rational interpolation without poles can be a much better
choice here (Fig.2.6).

Berrut [15] suggested to choose the following weights

up = (—D*.

With this choice Q(x) has no real roots. Floater and Horman [11] used the different
choice

Fig. 2.6 (Interpolation of a
step function) A step
function with uniform
x-values (circles) is
interpolated by a polynomial
(full curve), a cubic spline
(dashed curve) and with the
rational Floater—Horman

d = 1 function (2.105,
dash-dotted curve). The
rational function behaves
similar to the spline function
but provides in addition an
analytical function with
continuous derivatives
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Table 2.1 Floater-Horman

. . otk | d
weights for uniform data
L,1,1...,1,1,1 0
1,2,2,2,...,2,2,2,1 1
1,3,4,4,4,...,4,4,4,3,1 2
1,4,7,8,8,8,...,8,8,8,7,4,1 3
1,5,11, 15,16, 16, 16, ..., 16,16, |4
16,15,11,5,1
1 1
uk=(—l)k_1( + ) k=1...n—1
Xk+1 — Xk Xk — Xg—1
1 el 1
up=——"— u, =(-)""—— (2.105)

X1 — Xo Xn — Xp—1

which becomes very similar for equidistant x-values.
Floater and Horman generalized this expression and found a class of rational
interpolants without poles given by the weights

min(k,n—d) i+d

we= (= I (2.106)

X — X;
i=max(k—d,0) j—= lj:/k' k=Xl

where 0 < d < n and the approximation order increases with d. In the uniform case
this simplifies to (Table2.1)

| e max(k,n—d) d .
p=(=1) > el ) (2.107)

i=min(k—d,0)

2.5 Multivariate Interpolation

The simplest 2-dimensional interpolation method is bilinear interpolation.* It uses
linear interpolation for both coordinates within the rectangle x; <x < x;4; ¥ <

Vi = Vi1t

X + hy, Yig) — p(xi + hy, i)
Yi+1 — Vi

pxi +hy,yi +hy) =pO; +he,yi) +hy

= f(xi,y) +hxf(xi+1)’€yif _){(xi’y") (2.108)
i+1 — Ai

4Bilinear means linear interpolation in two dimensions. Accordingly linear interpolation in three
dimensions is called trilinear.
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Fig. 2.7 Bispline
interpolation

F(xiy Vis1) + Iy S yie) =i yie) F(xiy vi) — hy S i,y = fF (i yi)

Xi+1—Xi Xi1—Xi
y

Yi+1 — Vi

which can be written as a two dimensional polynomial

p(xi + hy, yi + hy) = ago + ahy + agihy + anhih, (2.109)
with
aoo = f(xi, yi)
e, y) — f(x, yi)
app =
Xiyl — Xi
0l = f(-xia yi+1) - f(-xia yl)
Yi+1 — Vi

a, S i, yi) — s Yivr) — fign, yi) + f (X, yi).

(2.110)
Xig1 — x)Yig1 — i)

Application of higher order polynomials is straightforward. For image processing
purposes bicubic interpolation is often used.

If high quality is needed more sophisticated interpolation methods can be applied.
Consider for instance two-dimensional spline interpolation on a rectangular mesh of
data to create a new data set with finer resolution’

fii = fihe, jhy) with0 <i <N, 0<j<N,. @2.111)

First perform spline interpolation in x-direction for each data row j to calculate new
data sets

frj=sCi fj,0<i<N,) 0<j<N, 0<i’<N, (2.112)
and then interpolate in y direction to obtain the final high resolution data (Fig.2.7)

fry =G frjs0<j <Ny 0<i' <N, 0<j <N, (2.113)

5 A typical task of image processing.
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Problems

Problem 2.1 Polynomial Interpolation
This computer experiment interpolates a given set of n data points by

e a polynomial

n

p(x)=Zn:f,~ I — (2.114)

Xi — Xp
i=0  k=0Jti T Tk

e a linear spline which connects successive points by straight lines
si(x) =a; +b;(x —x;) for x; < x < x4 (2.115)

e a cubic spline with natural boundary conditions

s(0) = pi(x) = q; + Bi(x —x) +yi(x —x)* 4+ 5i(x —x)° x < x < x4

(2.116)
s"(xp) =5"(x9) =0 (2.117)
e arational function without poles
izo fites
R(x) = 20—” (2.118)
20
with weights according to Berrut
up = (=¥ (2.119)
or Floater-Hormann
1 1 1
u, = (—1) + k=1...n—1 (2.120)
Xkl — Xk X — Xg—1
1 nel 1
uy = — u, = ()" —. (2.121)
X1 — Xo Xn — Xp—1

Table 2.2 Zener diode voltage/current data
Voltage -1.5 —-1.0 —0.5 0.0
Current —3.375 -1.0 —0.125 0.0
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Table 2.3 Additional voltage/current data
Voltage 1.0 2.0 3.0 4.0 4.1 42 4.5
Current | 0.0 0.0 0.0 0.0 1.0 3.0 10.0

Table 2.4 Pulse and step function data

X -3 -2 -1 0 1 2 3
Ypulse 0 0 0 1 0
Ystep 0 0 0 1 1 1 1

Table 2.5 Data set for two-dimensional interpolation

x 0 1 2 0 1 2 0 1
y 0 0 0 1 1 1 2 2
f 1 0 -1 0 0 0 -1 0 1

e Interpolate the data (Table2.2) in the range
—-15<x<0.

e Now add some more sample points (Table2.3) for —1.5 < x < 4.5

e Interpolate the function f(x) = sin(x) at the points x =0, 7, T, 37”, 2. Take
more sample points and check if the quality of the fit is improved.

o Investigate the oscillatory behavior for a discontinuous pulse or step function as

given by the data (Table?2.4)

Problem 2.3 Two-dimensional Interpolation

This computer experiment uses bilinear interpolation or bicubic spline interpolation
to interpolate the data (Table?2.5)
on a finer grid Ax = Ay = 0.1.



Chapter 3
Numerical Differentiation

For more complex problems analytical derivatives are not always available and have
to be approximated by numerical methods. Numerical differentiation is also very
important for the discretization of differential equations (Sect.12.2). The simplest
approximation uses a forward difference quotient (Fig. 3.1) and is not very accurate. A
symmetric difference quotient improves the quality. Even higher precision is obtained
with the extrapolation method. Approximations to higher order derivatives can be
obtained systematically with the help of polynomial interpolation.

3.1 One-Sided Difference Quotient

The simplest approximation of a derivative is the ordinary difference quotient which
can be taken forward

df o Af fGth) = [0

dx x) Ax h G-
or backward

df  Af  f) = fx—h)

a(x) v 5 . (3.2)
Its truncation error can be estimated from the Taylor series expansion

FaAh) = f0) [+ ) +5 @)+ — f(x)

h B h
h
=f’(X)+§f”(X)+~~ : (3.3)

The error order is O(h). The step width should not be too small to avoid rounding
errors. Error analysis gives
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f(x)

Fig. 3.1 (Numerical differentiation) Numerical differentiation approximates the differential
quotient by a difference quotient % ~ 2—{:. However, approximation by a simple forward difference

%(xo) ~ w, is not very accurate

Af = fl_(f(x + M)A+ ), £+ £2))
= (Af + f(x + h)e; — f(X)ex)(1 + £3)

=Af +Afes+ f(x +h)e; — f(x)ex + - - (3.4)
FL(Af, h(1 4 &) = Af + Afes J;{l(:;l;)gl — fxe2 (14 es)
Af Ja+h  fx)

= 7(1 +e5—e4+63)+ & &. (3.5)

h h

The errors are uncorrelated and the relative error of the result can be estimated by

af _Af Fo
Ax Ax X Em
Ax Ax

Numerical extinction produces large relative errors for small step width /. The opti-
mal value of & gives comparable errors from rounding and truncation. It can be found
from

h 1 N 28M 37
SO =1f 0= (3.7)

Assuming that the magnitude of the function and the derivative are comparable, we
have the rule of thumb

hy = Jeu ~ 1078

(double precision). The corresponding relative error is of the same order.
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Fig. 3.2 (Difference
quotient) The central
difference quotient (Right
side) approximates the
derivative (dotted) much
more accurately than the
one-sided difference quotient
(Left side)

3.2 Central Difference Quotient

Accuracy is much higher if a symmetric central difference quotient is used (Fig.3.2):
h h
A_f: Sx+3)—f&x—=3)
Ax h
FO+EFO+E O+ = fO=4FO+5 @+
- h

h2
= f'(x)+ ﬁf’”(x) +ee (3.8)

The error order is O (h?). The optimal step width is estimated from

hz " _ ZSM
2l Ol=1f@l== (3.9)

again with the assumption that function and derivatives are of similar magnitude as

ho =2 48ey ~ 107°. (3.10)

2
The relative error has to be expected in the order of }21—3 ~ 1071,

3.3 Extrapolation Methods

The Taylor series of the symmetric difference quotient contains only even powers
of h:

Jx+h) —fx—h)

b = 2h

h? h*
=f)+ "0+ 5 P+
3! 5!
3.11)
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Fig. 3.3 (Numerical 10° e
differentiation) The SF
derivative % sin(x) is 10 I
calculated numerically using 107 3
algorithms with increasing 5 E
error order (3.1, 3.8, 3.14, E 107
3.18). For very small step o . sf
. : £ 10
sizes the error increases as =
h~! due to rounding errors _% 10"
(Problem3.1) = 10_125
14f

10° 107 10" 10 10° 10° 10" 10 10
step size h

The Extrapolation method [16] uses a series of step widths, e.g.

hi
hivi == (3.12)

and calculates an estimate of D(0) by polynomial interpolation (Fig.3.3). Consider
Dy = D(hg) and D| = D(%). The polynomial of degree 1 (with respect to 4%)
p(h) = a + bh? can be found by the Lagrange method

h? — hg W2 — 2
p(h) = Dy——% + Dy 77— (3.13)
h— 2 2 —h
0 4 4 0
Extrapolation for h = 0 gives
1 4
p0) =—=Do+ = D;. (3.14)
3 3
Taylor series expansion shows
1 / h(z) " hé 5)
p(0)=—§ f(X)+§f (X)+§f )+ )+
4 / h(z) " hg )
& _ 3.15
+3(f<x>+4_3!f () + 705 FO ) + (3.15)
l 1 h?) 5)
=@ =35 7@+ (3.16)

that the error order is O(hg). For 3 step widths kg = 2h| = 4h, we obtain the poly-
nomial of second order (in A?%)



3.3 Extrapolation Methods

h} h} h}
0 =P =39 0 h2)<h2 ) 0
Dy 4 16 1 p 0 + Dy

43

h%)(hz 5)

p(h) =

and the improved expression

l 1 1
64 16 1
PO =Dz s +Diz 5+ D5 5 =
4 16 4 16 1 16
—lD 4D +64D f'(x) + 0.
45 0T gt T st = LW

Often used is the following series of step widths:

h? = h_é
1 2, *
The Neville method
2 2
PP i ) Pk (B?) — (B = ) Prog_y (BP)
L-~-k( ) - hg h%

2k 2

gives for h=0

P — ZkfiPH_l...k
=2k

Pix=

which can be written as

P‘...k_1 — P 1k
P =P+ ﬁ
and can be calculated according to the following scheme:

Py = D(hf) Por Po12 Poi3
= D(hj_z) Py Pip3
=D Py

Here the values of the polynomials are arranged in matrix form

Poi=T—i=T,;

2 n2 172 2
(h§ = ) (hg = 78) -5 (i

— i - )
(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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with the recursion formula

Tij-1 — i,

, 3.25
Ty (3.25)

Tij=Tiw1,j-1 +

3.4 Higher Derivatives

Difference quotients for higher derivatives can be obtained systematically using
polynomial interpolation. Consider equidistant points

X, =xo+nh=---x9g—2h,xo —h, xo,x0 +h,x0+2h,---. (3.26)

From the second order polynomial

PG =y (x — x0)(x — x1) . (x —x_ ) —x1)
(x—1 — x0p)(x—1 — x1) (xo — x_1)(x0 — x1)
oy TG
(x1 —x_(x1 — x0)
_ (x — x0)(x — x1) (x —x_1)(x —x1)
=yl e Yo Y
iy x‘z‘;lf‘ X0 (3.27)

we calculate the derivatives

2x — xp — X1 2X — x_1 — Xy 2X — X_1 — Xo

"(x) = y_ 3.28
p(x) =y e + Yo " + 2 (3.28)
Pl =5 -2+ (3.29)

which are evaluated at x:

’ ~ _ 1 1 _f(x0+h)_f(x0_h)

J(x0) = p'(xo) = Y-t T = o (3.30)
, (xo —h) =2 f(x0) + f(xo+ h)
£ & p () = L0 fh2° [ooth) (3.31)

Higher order polynomials can be evaluated with an algebra program. For five sample
points

xo — 2h, xo — h, xo, X0 + h, xo +2h
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we find

£lao = 28) = 8o = ) + 8o+ B) = f 0 + 20 (3.32)

—f(xg —2h) + 16 f(xg — h) — 30 f (xp) + 16 f (xg + h) — f(xo + 2h)
12h2

f(xo) =

1" (x0) ~
(3.33)

—f (0 — 2h) + 2 (xo — hz>h—3 2f (o + 1) + f (xo + 2h) (3.34)

flxg—2h) —4f(xo—h)+6f(xg+h)—4f(xo+h)+ f(xo+2h)
h# '

1" (x0) ~

P xo) ~

3.5 Partial Derivatives of Multivariate Functions

Consider polynomials of more than one variable. In two dimensions we use the
Lagrange polynomials

(x — xx) =y

Lii(x,y) = . (3.35)
! i G =X)L O = )
The interpolating polynomial is
plx,y) = fijLij(x,y). (3.36)

0]
For the nine sample points

(x—1,y1)  (x0, y1) (x1,¥y1)
(x=1,¥0) (x0,y0) (x1,Y0) (3.37)
(x—1, y-1) (x0, y—1) (x1,y-1)

we obtain the polynomial

(x —x0)(x —x1)( —y0)(y — y1)
"o —x0) (g — 2O — y0) (1) — 1)

px,y) = fo1- (3.38)

which gives an approximation to the gradient

S xot+h, yo) = f (xo—=h,yo)

2
gradf(xoyo) ~ gradp(xoyo) = T (3.39)
2h
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the Laplace operator

a2 92 2 9?2
—+ — DR —+ — ,
2 T a2 f(x0, y0) o2 T a2 p(x0, y0)

1
=3 (f(x0, yo +h) + f(x0, yo —h) + f(x0, yo +h) + f(x0, yo —h) —4f(x0, ¥0))

(3.40)
and the mixed second derivative
32 2
dxdy f(x0, yo0) = oxdy p(x0, Y0)
1
= m(f(lfo+h,yo+h)+f(xo—h,yo—h)—f(xo—h,yo+h)—f(xo+h,yo—h))-
(3.41)
Problems

Problem 3.1 Numerical Differentiation

In this computer experiment we calculate the derivative of f (x) = sin(x) numerically
with

o the single sided difference quotient

df _ fa+h - fe

3.42
dx h ( )
e the symmetrical difference quotient
d (x+h)— fx—h)
47 ~ Dy f(x) = f f , (3.43)
dx 2h

e higher order approximations which can be derived using the extrapolation method

1 4
- §th(x) + gDh/zf(x) (3.44)

lD 4D 64D 3.45
5 hf(x)_§ h/Zf(x)"‘E nya f (X). (3.45)

The error of the numerical approximation is shown on a log-log plot as a function of
the step width .



Chapter 4
Numerical Integration

Physical simulations often involve the calculation of definite integrals over
complicated functions, for instance the Coulomb interaction between two electrons.
Integration is also the elementary step in solving equations of motion.

An integral over a finite interval [a, b] can always be transformed into an integral
over [0, 1Tor [—1, 1]

b I
/ f(x)dx = / fla+ (b —a)) (b—a)dt
a 0

! a+b b—a\b—a
= t dt. 4.1
/_lf( LA ) . .1

An Integral over an infinite interval may have to be transformed into an integral
over a finite interval by substitution of the integration variable, for example

” dx = 1 ! di 4.2
/Of(x)x_/of(l_—t)(l—t)z 4.2)

1 2 +1
/_OO F(x)dx =/_l I (1 _ttz) (;2 St 43)

In general a definite integral can be approximated numerically as the weighted
average over a finite number of function values

b
/ fdx ~= D" wi f (xi). (4.4)

Specific sets of quadrature points x; and quadrature weights w; are known as “inte-
gral rules”. Newton—Cotes rules like the trapezoidal rule, the midpoint rule or
Simpson’s rule, use equidistant points x; and are easy to apply. Accuracy can
be improved by dividing the integration range into sub-intervals and applying
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composite Newton—Cotes rules. Extrapolation methods reduce the error almost to
machine precision but need many function evaluations. Equidistant sample points
are convenient but not the best choice. Clenshaw—Curtis expressions use non uniform

sample points and a rapidly converging Chebyshev expansion. Gaussian integration
fully optimizes the sample points with the help of orthogonal polynomials.

4.1 Equidistant Sample Points
For equidistant points

x;=a+ih i=0...N h=

N 4.5)

the interpolating polynomial of order N with p(x;) = f(x;) is given by the Lagrange
method

N

p(x) = Zﬁ 1= _);'; (4.6)

i=0  k=0ki

Integration of the polynomial gives

/ p(x)dx = Zf,/ H — dx. 4.7
a 4 =0t i Xi — Xk
After substituting
x=a-++hs
x—xy =h(s —k)
xi—xx = ({ —k)h (4.8)
we have
N N
—k
T gy = [T 3= hds=ha 4.9)
X; — Xx i—k
a4 j= 01#1 i 0 j=0,kri
and hence

b N
/ px)dx = (b—a) ) fia;. (4.10)
4 i=0
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The weight factors are given by

w; = (b —a)a; = Nha;. 4.11)

4.1.1 Closed Newton-Cotes Formulae

For N = 1 the polynomial is

X — X X — Xo
px) = fo + fi (4.12)
X0 — X1 X1 — Xo

and the integral is

b lg—1 ls—0
dx = ——hd ——hd
/apmx fo/0 TR M

—1)2 —_1)2 2 2
:_foh((l D> © 1))+f1h(1__o_)

2 2 2 2

fo+ fi
2

=h (4.13)

which is known as the trapezoidal rule (Fig.4.1). N = 2 gives Simpson’s rule

o f0+4f1+f2.

- (4.14)

Larger N give further integration rules
3 fo+3fi+3H+ /3
8

m Tfo+32/i+12H+32/+7f
90

sy 1900+ 751 + 502 + 50f3 +75 /i + 195
288

gy Hfo+ 2161 + 270> + 272 f5 + 27f4 + 216 f5 + 41 fs
840

3/8 — rule

Milne — rule

Weddle — rule.
(4.15)

For even larger N negative weight factors appear and the formulas are not
numerically stable.
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Fig. 4.1 (Trapezoidal rule and midpoint rule) The trapezoidal rule (Left) approximates the integral
by the average of the function values at the boundaries. The midpoint rule (Right) evaluates the
function in the center of the interval and has the same error order

4.1.2 Open Newton—Cotes Formulae

Alternatively, the integral can be computed from only interior points

b—a
;= h i=1,2,...N h= . 4.16
X a—+ih i Nl ( )
The simplest case is the midpoint rule (Fig.4.1)
b a+b
/ f(x)dx%2hf1=(b—a)f( > ) (4.17)
The next two are
3h
7<f1 + fz) (4.18)
4h
?(zfl - L+ 2f3)~ (4.19)

4.1.3 Composite Newton—Cotes Rules

Newton—Cotes formulas are only accurate, if the step width is small. Usually the
integration range is divided into small sub-intervals

[x,-,xi+1] xi=a+ih i=0...N (420)
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for which a simple quadrature formula can be used. Application of the trapezoidal
rule for each interval

h
= E(f(xi) +f(xi+l)) 4.21)
gives the composite trapezoidal rule

(4.22)

(f()+f( R e flb— h>+f(b))

with error order O (h?). Repeated application of Simpson’s rule for [a, a + 2h], [a +
2h,a + 4h] ... gives the composite Simpson’s rule

S = %(f(a)+4f(a+h)+2f(a+2h)+4f(a+3h)+
A+ 2f(b—=2h)+4f(b—h)+ f(b)) (4.23)

with error order O (h*).!
Repeated application of the midpoint rule gives the composite midpoint rule

M:2h(f(a+h)+f(a+3h)+-~-f(b—h)) (4.24)

with error order O (h?).

4.1.4 Extrapolation Method (Romberg Integration)

For the trapezoidal rule the Euler—-McLaurin expansion exists which for a 2m times
differentiable function has the form

XN
/ FfxX)dx — T = aph® + agh* + - - - azm_2h™ 72 + O (K*™). (4.25)
0

Therefore extrapolation methods are applicable. From the composite trapezoidal rule
for & and /1 /2 an approximation of error order O (h*) results:

I'The number of sample points must be even.
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/ fx)dx — T(h) = azh® +agh* + - - (4.26)
X0
XN h2 h4
/ f)dx —Th/2)=ar— +os—+--- (4.27)
X0 4 16
w AT (h/2) —T(h h*
/ f(x)dx — AT h/2) =T = —ay— - (4.28)
o 3 4
More generally, for the series of step widths
h
hy = 2—2 (4.29)
the Neville method gives the recursion for the interpolating polynomial
W2 — P — (W2 = B P (n?
P (b)) = ( 37) Pk ( 2) (2 538 ) Pik—1(h) (4.30)
hﬂ hO
T

which for 4 = 0 becomes the higher order approximation to the integral (Fig.4.2)

—2k i 2k—2i
2P k1 — 275 Py _ Piv_1—2 "Piypk

P.,= 2%k _ 52 = 1 — 22k—2i
P11 — Pig1k
=Ptk + Tﬂc—lm 4.31)
10° o
4
276
W gof " h E
L 107 X gor /‘5 7
5 h_ o /h°
o o
2 o sE o7 10 E
% 10 12 ; o /, h
2] =~ o <o
"% 8 6:6/ - /
12F RPN 1 E
10 o> ‘~<>\‘ 1
SowP
1
_16F Lo R Lo ]
10 N - B
10° 10* 107 10”
step width h

Fig. 4.2 (Romberg integration) The integral f()”z sin(x2)dx is calculated numerically. Circles show
the absolute error of the composite trapezoidal rule (4.22) for the step size sequence h; 41 = h; /2.
Diamonds show the absolute error of the extrapolated value (4.31). The error order of the trapezoidal
rule is O (h%) whereas the error order of the Romberg method increases by factors of /2. For very
small step sizes the rounding errors dominate which increase as 4 ~!



4.1 Equidistant Sample Points 53

The polynomial values can again be arranged in matrix form

Py Py1 Poro -+

Py P

P, (4.32)
with

T =P (4.33)

and the recursion formula

ho
To= P =15 (4.34)

T i1 — Tiv1,j-1

5 (4.35)

Tij=Ty1j1+

4.2 Optimized Sample Points

The Newton—Cotes method integrates polynomials of order up to N — 1 exactly,
using N equidistant sample points. Unfortunately the polynomial approximation
converges slowly, at least for not so well behaved integrands. The accuracy of the
integration can be improved by optimizing the sample point positions. Gaussian
quadrature determines the N positions and N weights such, that a polynomial of order
2N — 1 is integrated exactly. The Clenshaw—Curtis and the related Fejer methods
use the roots or the extrema of the Chebyshev polynomials as nodes and determine
the weights to integrate polynomials of order N. However, since the approximation
by Chebyshev polynomials usually converges very fast, the accuracy is in many
cases comparable to the Gaussian method [17, 18]. In the following we restrict the
integration interval to [—1, 1]. The general case [a, b] is then given by a simple
change of variables.

4.2.1 Clenshaw-Curtis Expressions

Clenshaw and Curtis [19] make the variable substitution

x =cosf dx = —sin6db (4.36)
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for the integral

1 b4
/ fx)dx = / f(cost) sint dt 4.37)
-1 0

and approximate the function by the trigonometric polynomial (7.19 with
N =2M,T =2n)

M—1
1 1 1
f(cost) = ﬁco + W E cjcos(jt)+ mcM cos(Mt) (4.38)

j=1

which interpolates (Sect.7.2.1 ) f(cost) at the sample points

f, = nAt = n% withn =0, 1,... M (4.39)

X, = COSE, = COS (nl) (4.40)
M

and where the Fourier coefficients are given by (7.17 )
M-1
T, .
cj=fo+2D flcosty))cos(= jn) + fu cos(jm). (4.41)
n=1 M

The function cos(j ¢) is related to the Chebyshev polynomials of the first kind
which for —1 < x < 1 are given by the trigonometric definition

T;(x) = cos(j arccos(x)) (4.42)

and can be calculated recursively

To(x) =1 (4.43)
Ti(x) =x (4.44)
Titi(x) =2xTj(x) — Tj—1(x). (4.45)

Substituting x = cos ¢ we find
Tj(cost) = cos(j ). (4.46)

Hence the Fourier series (4.38) corresponds to a Chebyshev approximation
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[ = Za,T () = 5 To() + Z ’T(x>+wTM(x) (4.47)

and can be used to approximate the integral

! |1 1= 1
/—1 f(x)dx %/0 7 co+ — ;Cj cos(jt)+ ﬁcMcos(Mt) sin 6 d6
(4.48)
1 cos(jm) + 1 1 cos(Mm) + 1
=3 Z e TR e v 449

where, in fact, only the even j contribute.
Example Clenshaw Curtis quadrature for M = 5

The function has to be evaluated at the sample points x; = cos(% k) = (1,0.80902,
0.30902, —0.30902, —0.80902, —1). The Fourier coefficients are given by

co 1 2 2 2 21 fo
) 1 1.618 0.618 —0.618 —1.618 —1 | [ £

\ } \1 —1618 0618 OE;S 1.2618 _11} \2}

and the integral is approximately
o
Cl

1
~ 2
/_lf(x)dx~(§0—l—250—7—250)l !

161
4
\e:)

= 0.0400 fy + 0.3607 f; 4 0.5993 f5 + 0.5993 f + 0.3607 f4 + 0.0400 fs.
@.51)

(4.50)

Clenshaw Curtis weights of very high order can be calculated efficiently [20, 21]
using the FFT algorithm (fast Fourier transformation, Sect.7.3.2).




56 4 Numerical Integration

4.2.2 Gaussian Integration

Now we will optimize the positions of the N quadrature points x; to obtain the
maximum possible accuracy. We approximate the integral by a sum

b N
/ fdx ~ " fxw; (4.52)
4 i=1

and determine the 2N parameters x; and w; such that a polynomial of order 2N — 1
is integrated exactly. This can be achieved with the help of a set of polynomials which
are orthogonal with respect to the scalar product

b
< fg>= / f)g(x)w(x)dx (4.53)

where the weight function w(x) and the interval [a, b] determine a particular set of
orthogonal polynomials.

4.2.2.1 Gauss-Legendre Integration

Again we restrict the integration interval to [—1, 1] in the following. For integrals
with one or two infinite boundaries see Sect.4.2.2. The simplest choice for the weight
function is

wx) = 1. (4.54)

An orthogonal system of polynomials on the interval [—1, 1] can be found using the
Gram-Schmidt method:

Py=1 (4.55)
P = P /] Py(x)dx = (4.56)
1] =X <P0P0> _lx oxX)dx = X .
P 1 P 1
P, =x*— —1/ x2P (x)dx — —0/ szO(x)dx
< PP >/ < PPy > J_

(4.57)

W =
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P 1
P, = x" = n—l/ x"Pn_l(x)dx
< Pnflpnfl > J-1

Pn—Z !
——/ x"Py_o(x)dx — -+ . (4.58)

< Pn72Pn72 > 1

The P, are known as Legendre-polynomials. Consider now a polynomial p(x) of
order 2N — 1. Itcan be interpolated at the N quadrature points x; using the Lagrange
method by a polynomial p(x) of order N — 1:

N
Pex) =D Li(x)p(x)). (4.59)
j=1
Then p(x) can be written as
p(x) = p(x) + (x —x1)(x —x2) ... (x — xn)q(x). (4.60)

Obviously g (x) is a polynomial of order (2N — 1) — N = N — 1. Now choose the
positions x; as the roots of the Legendre polynomial of order N

(x—x)x —x2)...(x —xy) = Py(x). 4.61)

Then we have

1
/ (x—=x)x—x2)...(x —xny)g(x)dx =0 (4.62)
-1

since Py is orthogonal to the polynomial of lower order. But now

1 1 1 N N
/1p(x)dx = /1 P(x)dx :/1 D pa)Lix)dx =D wip(x;)  (4.63)
- - - j=1 j=I

with the weight factors

1
W, = [ L@, (4.64)

Example (Gauss—Legendre integration with two quadrature points) The 2nd order
Legendre polynomial

Py(x) = x* — % (4.65)

has two roots
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1
X1,2 = + g

The Lagrange polynomials are

R N

and the weights

This gives the integral rule

[smas (= 5) 1 (5),

For a general integration interval we substitute

_a+b+b—a
T2 2

u

and find the approximation

/f(x)dx—/ f(a;b—l—b;au)b;adu

b—a a+b b—a |1 a+b b—a |1
- 2(f(2 - 2\/;)+f(2+2\/;))'

The next higher order Gaussian rule is given by

n=3:w;=w3=>59,w; =809, x3=—x; =0.77459...,x, =0.

(4.66)

4.67)

(4.68)

(4.69)

(4.70)

471

4.72)

4.73)
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4.2.2.2 Other Types of Gaussian Integration

59

Further integral rules can be obtained by using other sets of orthogonal polynomials,

for instance

Chebyshev Polynomials
() :
wx) = ——
1 —x2

1 1
/ f)dx = / FOOV1 — x2w(x)dx
-1 -1

Thp1(x) =2x T, (x) — T1(x)

2k —1 b4
X = COS T Wy = —.
2N N

Hermite Polynomials

w(x) = e

/OO f(x)dx =/ij Fx)e” wx)dx

Ho(x) =1, Hi(x)=2x, H,1(x)=2xH,(x)—2nH,_(x).

Laguerre Polynomials

wx)=¢e*

/00 fx)dx = /OO fx)e*wx)dx
0 0

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

4.81)

1
Lo =1 Li)=1=x. Lypi() = = (@n+1=0)Ln() = nLy_1().

(4.82)
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4.2.2.3 Connection with an Eigenvalue Problem

4 Numerical Integration

The determination of quadrature points and weights can be formulated as an eigen-
value problem [22, 23]. Any set of orthogonal polynomials P, (x) with

b
/ Py (x)P,(x)w(x)dx = 8y,

satisfies a three term recurrence relation

Pop1(x) = (@n1x + bpy1) Py(x) — cpp1 Pioi (%)

with a,, > 0, ¢, > 0 which can be written in matrix form [24]

Po(x)
P(x)

Py_1(x)

or shorter

_h

ay
@
ay

1

aj
by

a

1
az

cN—1 _bn—1

1
AN-1  dN—1 aN-1
N 2N
an an

xP(x) = TP(x) + LPN(X)eNfl
an

with a tridiagonal matrix 7. Obviously Py (x) = 0 if and only if

XjP()Cj) = TP()Cj),

Py(x)
Py(x)

Py_1(x)

(4.83)
(4.84)

0

0

0

a PN ()

(4.85)
(4.86)
(4.87)

hence the roots of Py (x) are given by the eigenvalues of 7. The matrix 7 is symmetric
if the polynomials are orthonormal, otherwise it can be transformed into a symmet-
ric tridiagonal matrix by an orthogonal transformation [24]. Finally the quadrature
weight corresponding to the eigenvalue x; can be calculated from the first component
of the corresponding eigenvector u; [22] as

b
w; = ”3,1 x/ wx)dx.
a

(4.88)



Problems

Problems

Problem 4.1 Romberg Integration

Use the trapezoidal rule

61

b
'Um:h(%ﬂw+fw+h%%~fw—h%+%ﬂm)=/ﬁfqu+~~

with the step sequence

hi = —
21

and calculate the elements of the triangular matrix

T, 0)=T(h)

T, k—1)—-TGE+1,k—1
TGk =TG+1,k—1)+ " ) - TG+ )

to obtain the approximations
Toy = Po1, Too = Po1z, Tos = Poizss - - -

e calculate

2

/ sin(x?)dx = 0.6773089370468890331 ...
0

(4.89)

(4.90)

4.91)

(4.92)

(4.93)

(4.94)

and compare the absolute error of the trapezoidal sums 7' (h;) = T; ¢ and the extrap-

olated values T ;.
e calculate

[

for e = 1073, Compare with the composite midpoint rule

T(h)=h(f(a+§)+f(a+%)+---+f(b—%

)+

(4.95)

-3))

(4.96)



Chapter 5
Systems of Inhomogeneous Linear Equations

Many problems in physics and especially computational physics involve systems of
linear equations

ayxy +---+apx, = by

oo 5.1
an1 X1+ -+ AppXy = bn
or shortly in matrix form
Ax=Db 5.2)

which arise e.g. from linearization of a general nonlinear problem like (Sect. 22.2)

0 0 OF OF 0
Fi(x1...xp) Fl(xf)...x,(, )) Txll Ox,: xl—xf)
0 0 OF, IF, 0
Fo(x1...xn) Fn(xg)...x,(Z )) ey O x,,—x,(,)
(5.3)
or from discretization of differential equations like
of . :
+DAN)—f(A .
1 1 : :
— i N - 9 |. (5.4)
Ax Ax fi+t gj+1
© Springer International Publishing AG 2017 63
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If the matrix A is non singular and has full rank, (5.2) can be formally solved by
matrix inversion

x=A"'b. (5.5)

If the matrix is singular or the number of equations smaller than the number of vari-
ables, a manifold of solutions exists which can be found efficiently by singular value
decomposition (Sect. 11.2). The general solution is given by a particular solution
and the nullspace of A

X =X, +zwith Ax, =band Az = 0. (5.6)

If the number of equations is larger than the number of variables there exists no
unique solution. The “best possible solution” can be determined by minimizing the
residual

|Ax — b| = min 5.7

which leads to a least squares problem (Sect. 11.1.1).

In the following we discuss several methods to solve non singular systems. If
the dimension is not too large, direct methods like Gaussian elimination or QR
decomposition are sufficient. Systems with a tridiagonal matrix are important for
cubic spline interpolation and numerical second derivatives. They can be solved
very efficiently with a specialized Gaussian elimination method. Practical applica-
tions often involve very large dimensions and require iterative methods. Station-
ary methods apply a simple iteration scheme repeatedly. The slow convergence of
the methods by Jacobi and Gauss-Seidel can be improved with relaxation or over-
relaxation. Non-stationary methods construct a sequence of improved approxima-
tions within a series of increasing subspaces of RN. Modern Krylov-space meth-
ods minimize the residual v = Ax — b within the sequence of Krylov-spaces
K,(A, 1) = span(r@, Ar®, .. A" 'r ). We discuss the conjugate gradients
method (CG [25]) for symmetric positive definite matrices and the method of gen-
eral minimal residuals (GMRES [26)) for non symmetric matrices. Other popular
methods are the methods of bi-conjugate gradients (BiCG [27] BiCGSTAB [28]),
conjugate residuals (CR [29]) , minimal residual (MINRES [30]), quasi-minimal
residual (QMR [31)), the symmetric LQ-method (SYMMLQ [32]) and Lanzcos type
product methods (LTPM [33-35]).

5.1 Gaussian Elimination Method

A series of linear combinations of the equations transforms the matrix A into an
upper triangular matrix. Start with subtracting a;;/a;; times the first row from rows
2...n




5.1 Gaussian Elimination Method

aj aj

T T T
a, a —12131
. —

T T T
a, a, — I, a

which can be written as a multiplication

AV =1,A
with the Frobenius matrix

1
- 1

Li=| b 1 li1 =

—In 1

The result has the form

app a2 - dip—1 din
0 ay' - ay,), @y,
Aav -] o0 a%) ag}l)
0 :
0 a}g‘;... o ah

Now subtract ZTE times the second row from rows 3 - - -

A® =1,AV =[,L,A

with

(U 1

The result is

ail

apg

65

(5.8)

(5.9)

(5.10)

.11

n. This can be formulated as

(5.12)

(5.13)
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2 2 (2
{an al% ag
0 a2 42 ...

22 43

A1 0 0 a:g)...

1 . N .
2
\0 0 a% -

2
ey,

5 Systems of Inhomogeneous Linear Equations

(5.14)

Continue until an upper triangular matrix results after n—1 steps:

A= — LnilA(n—Z)

Uiy Uip ug3 - -+
U Uz3 - -+

U=1 Uzz -« -+

k

1
_ln.n—l 1

A" =L, L, L)L A=U

\

The transformed system of equations

UX=y y= Ly, yL,_1---LyLib

(5.15)

(n—2)
_nn—l (5.16)

ln,n—l = (n—2)

n—1,n—1

(5.17)

(5.18)

(5.19)

can be solved easily by backward substitution:

1
Xn = Yn
unn

Xp—1 =
Un—1,n—1

Yn—1 — XnlUpn—1,n

(5.20)

(5.21)

(5.22)

Alternatively the matrices L; can be inverted:
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1 1
I 1 1
. . 1
lnl 1 ln,n—l 1
This gives
A=L7'Ly' LU (5.24)

The product of the inverted matrices is a lower triangular matrix:

1
L 1
Li'Ly = il

lnl ln2 1

1
o 1
L=L7'Ly' L = Do : (5.25)
il - 1
lnl ln2 e ln,n—l 1

Hence the matrix A becomes decomposed into a product of a lower and an upper
triangular matrix

A=LU (5.26)
which can be used to solve the system of (5.2).

Ax=LUx=Db 5.27)
in two steps:

Ly=b (5.28)

which can be solved from the top
yi =b (5.29)
y2 = by — by (5.30)

(5.31)
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Ux=y (5.32)

which can be solved from the bottom

1
Xn = Yn (5.33)
unn
Xy = y"_lu_& (5.34)
n—1,n—1
(5.35)

5.1.1 Pivoting

To improve numerical stability and to avoid division by zero pivoting is used. Most
common is partial pivoting. In every step the order of the equations is changed
in order to maximize the pivoting element gy ; in the denominator. This gives LU
decomposition of the matrix P A where P is a permutation matrix. P is not needed
explicitly. Instead an index vector is used which stores the new order of the equations

1 i
Pl:|=[:1] (5.36)

Total pivoting exchanges rows and columns of A. This can be time consuming for
larger matrices.

If the elements of the matrix are of different orders of magnitude it can be necessary
to balance the matrix, for instance by normalizing all rows of A. This can be also
achieved by selecting the maximum of

dik

> laijl

as the pivoting element.

(5.37)

5.1.2 Direct LU Decomposition

LU decomposition can be also performed in a different order [36]. For symmetric
positive definite matrices there exists the simpler and more efficient Cholesky method
decomposes the matrix into the product LL” of a lower triangular matrix and its
transpose [37].
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5.2 QR Decomposition

The Gaussian elimination method can become numerically unstable [38]. An alter-
native method to solve a system of linear equations uses the decomposition [39]

A= QR (5.38)
with a unitary matrix QTQ = 1 (an orthogonal matrix Q7 Q = 1 if A is real) and
an upper right triangular matrix R. The system of linear equations (5.2) is simplified

by multiplication with Q" = Q!

ORx=Ax=b (5.39)

Rx = Q'b. (5.40)

Such a system with upper triangular matrix is easily solved (see 5.32).

5.2.1 QR Decomposition by Orthogonalization

Gram-Schmidt orthogonalization [2, 39] provides a simple way to perform a QR
decomposition. It is used for symbolic calculations and also for least square fitting
(11.1.2) but can become numerically unstable.

From the decomposition A = QR we have

k
aik = ) qijr i (5.41)
j=1
k
a = riq (5.42)
j=1

which gives the k-th column vector a; of A as a linear combination of the orthonormal
vectors q; - - - qx. Similarly q; is a linear combination of the first k£ columns of A.
With the help of the Gram-Schmidt method 7 j; and q; are calculated as follows:

ri = lail (5.43)
a
q = — (5.44)

rn
Fork=2,---n:
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Fik = ;A i=1---k—1 (545)
by = a; —ruqi — k-1 (5.46)
Tk 2= |byl (5:47)
b
Q= —. (5.48)
Tk
Obviously now
a =Gk + M1 Qk—1 + - TR (5.49)
since per definition
qag=ryg i=1---k (5.50)
and
e = bel> = lagl> i+l = 2r = = 20 e (5.51)
Hence
1 2 2 2
Qeay = — (@ —rudn - P aQe-Da = —(lak|™ —rip - — 1) = Tk
Tkk Tkk
(5.52)
Orthogonality gives
qar=0 i=k+1---n. (5.53)

In matrix notation we have finally

rir ri2 - '
22+ oy
A=(@;---a,)=(q;---qp) Lo (5.54)

L)

If the columns of A are almost linearly dependent, numerical stability can be
improved by an additional orthogonalization step

by — by — (qib)qr — - - - (qe—1br) qr—1 (5.55)

after (5.46) which can be iterated several times to improve the results [2, 40].
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Fig. 5.1 (Householder u
transformation) A
Geometrically the

Householder transformation
(5.56) is a mirror operation ~~ qess-----o--o
with respect to a plane with

normal vector u
ur

: r—2u(ur)

5.2.2 QR Decomposition by Householder Reflections

Numerically stable algorithms use a series of transformations with unitary matrices,
mostly Householder reflections (Fig.5.1) [2]' which have the form

P=Pl =1-2uu (5.56)
with a unit vector
[u] = 1. (5.57)

Obviously P is an orthogonal matrix since

P'P=(—-2uua")(1-2uu") =1-4uu’ + 4uu’uu’ = 1. (5.58)
In the first step we try to find a vector u such that the first column vector of A

ary
a = : (5.59)

anl

! Alternatively Givens rotations [39] can be employed which need slightly more floating point
operations.
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is transformed into a vector along the 1-axis
k
0
o)

Multiplication with the transpose vector gives

Pa; = (1 —2uu’)a; = ke =

k* = (Pa))” Pa; =al PT Pa; = |a,|
and
k= +la|
can have both signs. From (5.60) we have
a; —2u(ua;) = ke;.
Multiplication with a gives
2(ua))’ = ai]® —k(are)
and since
lay — ke |* = |ay|* + k% — 2k(are)) = 2la;|* — 2k(ase))
we have
2(ua))’ = %|a1 — ke |?

and from (5.63) we find

a, — ke] a; — ke1

2ua;  |a; —ke|’
To avoid numerical extinction the sign of k is chosen such that
o = sign(k) = —sign(ay;).

Then,

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)
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1
u=
JM%+m+ﬁo+MmM%?7?JZ
sign(ai) (|a11| +Jaf, + a3 +.. '“51)
. (5.69)
an1
sign(ar) (wwm)
2uu’a; = a1
Anl

1
X R e
(“%1+"'+“51)+|a11|\/m

(5.70)
and the Householder transformation of the first column vector of A gives
—sign(a)y/a?, ...a2
(1 —2uua, = 0 . (5.71)
0

Thus after the first step a matrix results of the form

@ @ (1)

dip Gpp --- Ay
(1) alb

AV —pa=]|

(D 1
0 a5y ...al

In the following (n-2) steps further Householder reflections are applied in the sub-
space k < i, j < n to eliminate the elements

Qkt1k -+ - An k

of the k — th row vector below the diagonal of the matrix:
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[eY] (1) (1) (H
(a“ N SR TR Ol S b \l
0 . . .
: : (k—1) (k—1) (k=1) :
1 g k—1 ek -1 |
Ak-D _p  pa—I (k—1) k-1 1 5.72
k—1 1 I 0 ak,k ak,n I ( )
(k—=1) (k—1)
! D1,k Gy
. : |l
Do : . L
\O e 0 ay ) als D }
P = N .
T
1 —2uu’
Finally an upper triangular matrix results
@ (1) (n (1)
/a“ a}%) azé')’_l a}é,)l \l
0 ay ... ay, 1 ay,
AD =(p_,...PDA=R=V o . o (5.73)

|

. : Lo (=1 (n—1)
. . . an—l,n—l an—l,n
0 0 ... 0 a=b

n,n

If the orthogonal matrix Q is needed explicitly additional numerical operations are
necessary to form the product

0= Pyy...P)". (5.74)

5.3 Linear Equations with Tridiagonal Matrix

Linear equations with the form

bi1x1 +c1x2 =1 (5.75)
aiXi—q + b,-x,» + CiXiy1 = Fi [ =2--- (n — 1) (576)

anXp_1 +bpx, =1, 5.77)
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75

can be solved very efficiently with a specialized Gaussian elimination method.”
They are important for cubic spline interpolation or second derivatives. We begin by
eliminating a,. To that end we multiply the first line with a,/b; and subtract it from

the first line. The result is the equation

Baxy + cox3 = p2

with the abbreviations

ﬁ b c1ay rias
D=0 ——F— = ——F]":.
by by

We iterate this procedure
Bixi + cixiy1 = pi

Ci—14; Pi—14;

Pi ri —
Bi—i Bi—i

Bi = b; —

until we reach the n-th equation, which becomes simply

ﬂnxn = Pn

ﬁnzbn_

n = Tn

ﬂn—l

Now we immediately have

ﬂn—]

_
B

and backward substitution gives

xl‘l

Pi—1 — Ci—1X;
Xil = —
Bi-1
and finally
ry—cCcix2
X = —".
Ba

Cn—1an Pn—10n

(5.78)

(5.79)

(5.80)

(5.81)

(5.82)

(5.83)

(5.84)

(5.85)

(5.86)

This algorithm can be formulated as LU decomposition: Multiplication of the

matrices

2This algorithm is only well behaved if the matrix is diagonal dominant |b;| > |a;| + |c;]|.
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DRREE N
121 ﬁZCZ

L=1 b1 I U=1 Bses (5.87)

A

gives
{51 ci \
| . . |
v=" ‘ ! 5.88
I lﬂ,l(lc,lw,) ¢ | (5.88)
| |
k lnﬁnfl (lncnfl + ﬁn)}
which coincides with the matrix
[ )
7% el e
| L |
U ' 5.89
- | a; bi Ci 1 ( . )
I |
\ ap—1 bn 1 Chn— l}
if we choose
[ (5.90)
" B '
since then from (5.81)
bi = Bi +lici— (5.91)

and

LiBi-1 = a;. (5.92)
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5.4 Cyclic Tridiagonal Systems

7

Periodic boundary conditions lead to a small perturbation of the tridiagonal matrix

by ¢ a

az.

a; bi ¢

ap—1 bnfl Cn—1

Cyp Ay bn
The system of equations

AX=r

(5.93)

(5.94)

can be reduced to a tridiagonal system [41] with the help of the Sherman—Morrison
formula [42], which states that if A is an invertible matrix and u, v are vectors and

1+v A 'lu= 0

then the inverse of the matrix?

A=Ay+ uv’
is given by
- -1
A At - Ay uvTA(l)
1+viA; a
‘We choose
« «
0
w/ = [(10--0%)=
0
Cn Cn

(5.95)

(5.96)

(5.97)
ai

(5.98)

3Here uv’ is the outer or matrix product of the two vectors.



78 5 Systems of Inhomogeneous Linear Equations

(bl—Oé) (&) 0 \
a

1

I

I

1

Then

Ag=A—uv! = (5.99)

a; b ¢

|
|

ap—1 bn—l Cn—1
0 Gy (by— )

is tridiagonal. The free parameter o has to be chosen such that the diagonal elements
do not become too small. We solve the system (5.94) by solving the two tridiagonal
systems

A()X() =T
Apq =u (5.100)

and compute x from
(Ay'w)vT (Ag'r) _ vixg

x=Ar=alp 20 WY P U .
0 1+ v (A;'w) 0T

(5.101)

5.5 Linear Stationary Iteration

Discretized differential equations often lead to systems of equations with large sparse
matrices, which have to be solved by iterative methods which, starting from an initial
guess X, (often simply xo = 0 or xo = b ) construct a sequence of improved vectors
by the iteration

x"D = @ (x™ | b) (5.102)
which under certain conditions converges to the fixed point

Xpp = @(Xpp, b) (5.103)

which solves the system of equations

Ax = b. (5.104)
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A linear iterative method is called stationary, if it has the form

x"+D = Bx™ 4 Cb (5.105)
where the matrices B (the so called iteration matrix) and C are constant and do not

depend on the iteration count n. A fixed point of (5.105) solves (5.104) and hence
the method is consistent, if

x = Bx + Cb = Bx + CAx (5.106)
and hence
B=1—-CA (5.107)

which brings the iteration to the general form

x"D = (1 — cAX™ + Cb =x" — C(Ax"™ —b) (5.108)

r(n+1) — (l _ AC)I'(”). (5109)

5.5.1 Richardson-Iteration

The simplest of these methods uses C = w/l with a damping parameter w. It iterates
according to

X(n+1) — X(n) _ w(AX(”) _ b) (5110)

r = (1 —wA)r®. (5.111)

The Richardson iteration is not of much practical use. It serves as the prototype
of a linear stationary method. To improve convergence (5.104) usually has to be
preconditioned by multiplication with a suitable matrix P

PAx = Pb (5.112)
for which the Richardson iteration

XD = x™ _ ,P(AX™ — b) (5.113)

is of the general form (5.108).
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5.5.2 Matrix Splitting Methods

Let us divide the matrix A into two (non singular) parts [2]

A=A+ A, (5.114)
where A can be easily inverted and rewrite (5.104) as

Aix=b — Axx (5.115)
which defines the iteration

D(x) = —A;'Ax + AT'D (5.116)
=-AT'A—-ADx+AT'D=x— A (Ax - b). (5.117)

5.5.3 Jacobi Method

Jacobi divides the matrix A into its diagonal and two triangular matrices [43]:
A=L+U+D. (5.118)

For A the diagonal part is chosen

A =D (5.119)
giving
x D — _D*I(A _ D)X(”) + D*lb (5.120)

which reads explicitly

1 1
X" = - Zaijxj(-") + ;bzw G.121)
12 j#l 113

This method is stable but converges rather slowly. Reduction of the error by a factor
of 1077 needs about % iterations. N grid points have to be evaluated in each iteration
and the method scales with O (N?) [44].
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5.5.4 Gauss-Seidel Method
With

Ai=D+L (5.122)
the iteration becomes

(D + L)x"D = —Ux™ +b (5.123)

which has the form of a system of equations with triangular matrix [45]. It reads
explicitly

> aix{" = =" 4" + b (5.124)

Jj<i Jj>i

Forward substitution starting from x; gives

. 1
i=1: xinﬂ) = — —Zaijx;") + b,
=

1
=9 x§n+1) _ _a21x§n+1) _ Zaijx;n) +b,

Jj=3
1
P—3- x;nJrl) _ _aslenJrl) _ a32x§n+1) _ Zaijxj‘n) +bs
433 j=4
1
(n+1) __ (n+1) (n)
3= — =D a3 a4 by | (5.125)
1 j<i j>i

This looks very similar to the Jacobi method. But here all changes are made immedi-
ately. Convergence is slightly better (roughly a factor of 2) and the numerical effort
is reduced [44].

5.5.5 Damping and Successive Over-relaxation

Convergence can be improved [44] by combining old and new values. Starting from
the iteration
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Aix"D = (A — Ax™ +b (5.126)
we form a linear combination with

Dx"*tD = px™ (5.127)
giving the new iteration equation

(1 —w)D 4+ wADX"D = (1 —w)D + wA; — wA)X"™ + wh. (5.128)

In case of the Jacobi method with D = A we have

DX = (D — wA)X™ +wh (5.129)

XD = x™ _ ;D 1 (Ax — b) (5.130)
which can be also obtained directly from (5.113).

Explicitly,

xi("H) =(1- w)x,»(") + i - Zaijxﬁn) +bi|. (5.131)

all ‘]‘:/{l
The changes are damped (0 < w < 1) or exaggerated (1 < w < 2).
In case of the Gauss-Seidel method with A; = D + L the new iteration* (5.128)

is

(D +wL)x"*Y = (D + wL — wA)X™ +wb = (1 —w)Dx" —wUXx™ +wb

(5.132)
1 -1
LD _ o) (_ D+ L) (Ax™ _ b) (5.133)
w
or explicitly
xi<n+1> = (1 —w)x, n 4 w zau (n+1) Zau ™). (5.134)

j<i Jj>i

4This is also known as the method of successive over-relaxation (SOR) and differs from the damped
Gauss-Seidel method which follows from (5.113).




5.5 Linear Stationary Iteration 83

It can be shown that the successive over-relaxation method converges only for 0 <
w < 2. For optimal choice of w about % p+/ N iterations are needed to reduce the

error by a factor of 1077. The order of the method is O (N 2) which is comparable
to the most efficient matrix inversion methods [44].

5.6 Non Stationary Iterative Methods

Non stationary methods use a more general iteration
X" = @, (x,) (5.135)

where the iteration function differs from step to step. The method can be formulated
as a direction search

XD = x™ 4 .8, (5.136)
with direction vectors s, and step lengths \,,. The residual
r) = Ax"HD —p =™ 4 )\, 45, (5.137)

is used as a measure of the remaining error since the exact solution Xzp together
with the error vector

d® =x™ _x;p (5.138)
are unknown. Both are, however, related by

Ad™ = Ax™ — Axpp = AX® —b =1". (5.139)

5.6.1 Krylov Space Methods

Solution of the linear system
Ax=Db (5.140)
can be formulated as a search for the minimum

mingepv||AX — b]. (5.141)
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General iterative methods look for the minimum residual in a subspace of RY
which is increased at each step. The Richardson iteration, e.g. iterates

XD = (1 — wA)X® + wb = x® — wr® (5.142)
r D = A® — wr®) —b = (1 — wA)r®
ro = Axo—b

xD = x© _ ,p©

D = O _ Ar©
x@ = x _ p® — O 9O 42400

r? = (1 —wA)yr? =r® —20Ar® + 2 A% @

Obviously,
x® —xp € K, (A, r?) ™ e K, (A, r?)
with the definition of the n-th Krylov subspace’

K, (A, r?) = span{r®, Ar©® A%r©@ A"~1pOy (5.143)

5.6.2 Minimization Principle for Symmetric Positive Definite
Systems

If the matrix A is symmetric and positive definite, we consider the quadratic form
defined by

T L7
h(x) =ho—x"b+ X AX. (5.144)
At a local minimum the gradient
Vh(x) = Ax—b=r (5.145)

is zero and therefore the minimum of % is also a solution of the linear system of
equations

Ax = b. (5.146)

5For the most common choice xg = 0 we have r® = —b and xg + K, (A, r?) =K, (A, r®) =
K, (A,b).
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5.6.3 Gradient Method

The simple Richardson iteration (Sect.5.5.1) uses

xHD = x _ r® (5.147)
with a constant value of w.

r D = ™ _ A, (5.148)

Let us now optimize the step width along the direction of the gradient vector. From

d
0= d—|1r<"+‘>|2 =r"7(1 —wA)(1 — wA)Ir"®
w

=r"T (=24 4+ 20A%)r™ = —2r™T Ar™ 4 20| Ar™? (5.149)
r =2r"7(—1 4+ wA)Ar®™

we find the optimum value

w T AF®
The residuals®
ro = —b (5.151)
r' = —b+w®Ab (5.152)
r? = —b+ " +w?)Ab — W@V A%b (5.153)
etc. obviously are in the Krylov subspace
r™ e K,.1(A,b) (5.154)
and so are the approximate solutions
x = wp (5.155)
x? = (W + Wb — wPwV Ab (5.156)
x™ € K,(A,b). (5.157)

OWe assume xg = 0.
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5.6.4 Conjugate Gradients Method

The gradient method gives an approximate solution

LD — O _ OO _ OpD ) (5.158)
but the previously chosen w® ... w” Vare not optimal since the gradient vectors
r'® ... r™are not orthogonal. We want to optimize the solution within the space
spanned by the gradients for which a new basis s . . .s™is introduced which will
be determined later

K, = span(r® ... r®) = span(s© ...s™). (5.159)

Using s™as search direction the iteration becomes

x+HD — x® 4 A (5.160)

D — p 4 A gg0) (5.161)
After n+1 steps

rt) = @ £ 3 A 450 = A@O + > A5, (5.162)
Multiplication with s" gives

§MT p+) — mT 4q© Z ADIMT Agh) (5.163)

which, after introduction of the A—scalar product which is defined for a symmetric
and positive definite matrix A as

(x,y)a =x" Ay (5.164)

becomes

n
ST — (5 @), 3T AD (5™, 50,
j=0

which simplifies considerably if we assume A-orthogonality of the search directions

™, s =0 form= j (5.165)

because then
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ST pt ) — (gm) qO)y 4 A0 (glm) gm)y (T L O) 4 \m)gmT g lm)

(5.166)
If we choose
(m)T 1.(0)
m _ S r
AV = ~ ST g (5.167)

the projection of the new residual r”*Vonto K, vanishes, i.e. this is the optimal
choice of the parameters A(® ... \™,

Obviously the first search vector must have the direction of r® to span the same
one-dimensional space. Therefore we begin the iteration with

SO _ 1O (5.168)
0)2
o___ I
P (5.169)
XD = x© 4 )OO0 (5.170)

For the next step we apply Gram-Schmidt orthogonalization

, D, 59),

1 — D ©
S =T —S .
(50, 50) 4

(5.171)

For all further steps we have to orthogonalize s+ withrespect to allof s . . . s,
But, fortunately, the residual r+Vis already A—orthogonal tos”~ ... s®_ This can
be seen from (5.161)

rUFD _ p) = \D) AgD) (5.172)
, . 1 ‘ .
(D (D), = p@+DT gg() — Wr(’””T(r““) — ). (5.173)

We already found, that r*V is orthogonal to K, , hence to all r™, ... r©.
Therefore we conclude

(r(’H'l)’ S(j))A =0 forj+1<n. (5.174)

Finally we end up with the following procedure

§MT 1O

XD = x4 AWM with A = (5.175)

T gT Agm)
D — ) A0 g0 (5.176)
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r+hT Aglm

st = p D _ g yith g = (5.177)

sMT Agm) *
This method [25] solves a linear system without storing the matrix A itself. Only
the product As is needed. In principle the solution is reached after N = dim(A)
steps, but due to rounding errors more steps can be necessary and the method has to
be considered as an iterative one.
The expressions for A and 3 can be brought to numerically more efficient form.
From (5.162) we find

n—1
sOTr® = g7 [ " \D A0 | . (5.178)
j=0

But due to A-orthogonality of the search directions

ST RO — T L) _ LT () (5.179)

which simplifies

(MT p(n)
r'"’r
(n) _ _
A = ST As (5.180)
Furthermore, from (5.176) and orthogonality of the residual vectors
r@t DT D) A ) (DT g ) (5.181)
from which
1 nr 1
5(’” _ r@+DT g _ _Wr(m— )T p(n+1)
smT Ag(n) smT Ag(n)
l.(n-H)Tr(n-H)

The conjugate gradients method is not useful for non symmetric systems. It can
be applied to the normal equations (11.32)

ATAx = ATb (5.183)

which, for a full-rank non singular matrix have the same solution. The condition
number (Sect.5.7), however, is

cond(ATA) = (condA)2 (5.184)

and the problem may be ill conditioned.
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5.6.5 Non Symmetric Systems

The general minimum residual method (GMRES) searches directly for the minimum
of ||Ax —b|| in the Krylov spaces of increasing order K, (A, r?). To avoid problems
with linear dependency, first an orthogonal basis

K, (A, ) = span(qi, Q2. - - - ) (5.185)

is constructed with Arnoldi’s method, a variant of Gram-Schmidt orthogonalization.
Starting from the normalized vector

O

the dimension is iteratively increased by orthogonalizing the vector Aq, with respect
to K, (A, r©)’

(irH»l = Aqn - Z(qj’ qn)qu - Aqn - Z(q]TAqn)q] - Aqn - Zhjnqj

j=1 j=1 j=1
(5.187)
and normalizing this vector
- q,
R I L (5.188)
n+1,n
Then
n
Aqn = hn+1,nqn+l + Zhjnqj (5189)
j=1
which explicitly reads
h
Aq =hyqp + hiq = (qi1, q2) (h;) (5.190)
hi2
Aqy = h3q3 + hi2q) + hnge = (q1, q2, q3) | 72 (5.191)
h3»

7qo is a linear combination of q; and Aqi, q3 one of qi, q2 and Aq> hence also of qi, Aqq,
A?q etc. which proves the validity of (5.185).
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AQ, = M1 0Qny1 +haQa + - R (5.192)
The new basis vectors are orthogonal® since
4/ @ = qf [Aqi — @{ AgDai] = (@] Aq)(1 — i) =0

and induction shows fork =1...n

4/ Q.1 = 9 AQ, — Y _(a] Aq,)(q]q)) = qf A, — (] Aq,)di ; = 0.
j=1 j=1
We collect the new basis vectors q; . . . q, into a matrix
U,=(q1,-..-q) (5.193)
and obtain from (5.190) to (5.192)
AU, =U, 1 H (5.194)

with the (n 4+ 1) x n upper Hessenberg matrix

hiyhio ... hiy
hay hy hay,
H=1  hy . S (5.195)
[ ) [
. hnn
\ hn+],n}
Since
x™ —xg € K, (A, 1) (5.196)

it can be written as a linear combination of q; ... q,
x™ —xo=(q...qn)V. (5.197)
The residual becomes

r’” = A(q...q,)v+ Axg — b = A(q; ... q,)Vv +1r?
= Uy Hv + r¥q

81f .1 = O the algorithm has to stop and the Krylov space has the full dimension of the matrix.




5.6 Non Stationary Iterative Methods 91

1
0
=U,yi | Hv+r?) ] . (5.198)
0
hence
11" 1
0 0
r®)2 = | Hv+r?| . UL Uiy | Hv+ 121 ] . (5.199)
0 0
But since
a’ 1
UlhUi = @ |@-can=| - (5.200)
q, 1

is a n X n unit matrix, we have to minimize
1
0 0
r®| = [Hv + [+ | . (5.201)
0
which is a least square problem, since there are n + 1 equations for the n unknown

components of v. It can be solved efficiently with the help of QR decomposition
(11.36)

H=Q(§) R= o (5.202)

rl’ll’l

with a (n + 1) x (n + 1) orthogonal matrix Q. The norm of the residual vector
becomes

0
|r<"’|=Q(§)V+"’(°)' : Z(If)v)“r(o)'QT 3 I
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Substituting

P N e W
L)Ly )

r™| = /y2, +IRV+y[? (5.205)

which is obviously minimized by solving the triangular system

(5.204)

Rv+y=0. (5.206)
The GMRES method usually has to be preconditioned (cf.5.112) to improve con-

vergence. Often it is restarted after a small number (e.g.20) of iterations which avoids
the necessity to store a large orthogonal basis.

5.7 Matrix Inversion

LU and QR decomposition can be also used to calculate the inverse of a non singular
matrix

AAT = 1. (5.207)

The decomposition is performed once and then the column vectors of A~! are cal-
culated similar to (5.27)

L(UA) =1 (5.208)
or (5.40)
RA™'=0Q". (5.209)

Consider now a small variation of the right hand side of (5.2)
b + Ab. (5.210)
Instead of

A7'b =x (5.211)
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the resulting vector is
A7'(b+ Ab) = x + Ax (5.212)

and the deviation can be measured by’

[|AX]| = ||A7"]] || Ab]| (5.213)
and since
[AI]11x]] = [Ib]| (5.214)

the relative error becomes

|| Ax|| —1,, |[4b]|
= [JAI[ AT === (5.215)
I1x| I[bl]

The relative error of b is multiplied by the condition number for inversion

cond(A) = ||A[| [|A7Y]. (5.216)

Problem

Problem 5.1 (Comparison of different direct Solvers, Fig.5.2) In this computer
experiment we solve the system of equations

Ax=b (5.217)

with several methods:

e Gaussian elimination without pivoting (Sect.5.1),

e Gaussian elimination with partial pivoting (Sect.5.1.1),

e QR decomposition with Householder reflections (Sect.5.2.2),

e QR decomposition with Gram-Schmidt orthogonalization (Sect.5.2.1),

e QR decomposition with Gram-Schmidt orthogonalization with extra orthogonal-
ization step (5.55).

The right hand side is chosen as

9The vector norm used here is not necessarily the Euclidean norm.
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maximum absolute error

dimension n

Fig. 5.2 (Comparison of different direct solvers) Gaussian elimination without (circles) and with
(x) pivoting, QR decomposition with Householder reflections (squares), with Gram-Schmidt orthog-
onalization (diamonds) and including extra orthogonalization (+) are compared. The maximum dif-

ference max;—;._, (|x; — x;’m” |) increases only slightly with the dimension n for the well behaved

matrix (5.224,a) but quite dramatically for the ill conditioned Hilbert matrix (5.226,b)

b=A (5.218)

X = . (5.219)

Several test matrices can be chosen:

e Gaussian elimination is theoretically unstable but is stable in many practical cases.
The instability can be demonstrated with the example [38]

1 1
—11 1
A= 1-11 Ly, (5.220)

)

No pivoting takes place in the LU decomposition of this matrix and the entries in
the last column double in each step:




Problem

1
-1 1

NSNS}

A — AD — 1

-1 -1-12 —1 -1

S~ =

4

L AlTD

95

21’1'—1

(5.221)

Since the machine precision is €y = 27 for double precision calculations we
have to expect numerical inaccuracy for dimension n > 53.

e Especially well conditioned are matrices [46] which are symmetric

Aij = Aji

and also diagonal dominant
> 1A < 1Ail.
i

We use the matrix

nl...11
In...11
A=|: .
11 1nl
111 1n

which can be inverted explicitly by

ab...bb
ba bb

A l=1]": .
bb b ab
bb b ba

(5.222)

(5.223)

(5.224)

(5.225)

and has a condition number!® which is proportional to the dimension 7 (Fig.5.3).

e The Hilbert matrix [47, 48]

"9Using the Frobenius norm [|A|| = \/>;; A7
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Fig. 5.3 (Condition 102
numbers) The condition
number cond(A) increases
only linearly with the
dimension n for the well 5 16k 5
behaved matrix (5.224, full 107 ]
circles) but exponentially for 2
the ill conditioned Hilbert g
matrix (5.226, open circles) R= |
g 10°F .
S
oF - - )
10 5 10 15
dimension n
{1 A TR \
1 1 1
P11
=133 3 pra il (5.226)
| |

LL ;}
n+l n4+2 °°° 2n—1

is especially ill conditioned [49] even for moderate dimension. It is positive definite
and therefore the inverse matrix exists and even can be written down explicitly
[50]. Its column vectors are very close to linearly dependent and the condition
number grows exponentially with its dimension (Fig.5.3). Numerical errors are
large for all methods compared (Fig.5.2).

S = .

e random matrices

Ajj=¢e[-1,1] (5.227)




Chapter 6
Roots and Extremal Points

In computational physics very often roots of a function, i.e. solutions of an equation

like
fOa-xn) =0 6.1)
have to be determined. A related problem is the search for local extrema (Fig.6.1)
max f(x;---xy) min f(x;---xy) (6.2)

which for a smooth function are solutions of the equations

Of@i-xw) g 1. N 6.3)
8xi
In one dimension bisection is a very robust but rather inefficient root finding method.
If a good starting point close to the root is available and the function smooth enough,
the Newton—Raphson method converges much faster. Special strategies are necessary
to find roots of not so well behaved functions or higher order roots. The combination
of bisection and interpolation like in Dekker’s and Brent’s methods provides gener-
ally applicable algorithms. In multidimensions calculation of the Jacobian matrix is
not always possible and Quasi-Newton methods are a good choice. Whereas local
extrema can be found as the roots of the gradient, at least in principle, direct optimiza-
tion can be more efficient. In one dimension the ternary search method or Brent’s
more efficient golden section search method can be used. In multidimensions the
class of direction set search methods is very popular which includes the methods
of steepest descent and conjugate gradients, the Newton—Raphson method and, if
calculation of the full Hessian matrix is too expensive, the Quasi-Newton methods.

© Springer International Publishing AG 2017 97
P.O.J. Scherer, Computational Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-61088-7_6
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Fig. 6.1 Roots and local
extrema of a function f
max
0
fmin

6.1 Root Finding

If there is exactly one root in the interval ¢y < x < by then one of the following
methods can be used to locate the position with sufficient accuracy. If there are
multiple roots, these methods will find one of them and special care has to be taken
to locate the other roots.

6.1.1 Bisection

The simplest method [51] to solve
fx)=0 (6.4)

uses the following algorithm (Fig. 6.2):

(1) Determine an interval [ag, bo], which contains a sign change of f(x). If
no such interval can be found then f (x) does not have any zero crossings

(2) Divide the interval into [ag, ag + h“g““] [ag + 2 5%, bo] and choose that
interval [ay, b;], where f(x) changes its sign.

(3) repeat until the width b, — a, < ¢ is small enough.'

The bisection method needs two starting points which bracket a sign change of
the function. It converges but only slowly since each step reduces the uncertainty by
a factor of 2.

1Usually a combination like € = 2eys + |b, e, of an absolute and a relative tolerance is taken.
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Fig. 6.2 Root finding by
bisection

f(x)

Fig. 6.3 Regula falsi
method

£(x)

6.1.2 Regula Falsi (False Position) Method

The regula falsi [52] method (Fig.6.3) is similar to the bisection method [51].
However, polynomial interpolation is used to divide the interval [x,,a,] with
f(x,) f(a,) < 0. The root of the linear polynomial

p) = £ + (x — xpy 239 = S 0r) 65)

ar — Xy
is given by

ar — Xr arf(xr) — xrf(ar)
= x — f(x, = 6.6
b= ) T e T fe = f@) (6.0)

which is inside the interval [x,, a,]. Choose the sub-interval which contains the sign
change:
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f(xr)f(gr) <0— [xr-Ha ar+1] = [xr, fr]
f(xr)f(é-r) >0— [xr+lv arJrl] = [é-rs ar]' (67)

Then &, provides a series of approximations with increasing precision to the root of

f(x) =0.

6.1.3 Newton—-Raphson Method

Consider a function which is differentiable at least two times around the root &.
Taylor series expansion around a point x( in the vicinity

1
00 = f (x0) + (x = %0) ['(x0) + 5 (x = x0)2 " (x0) + - - - (6.8)
gives forx = ¢
1
0= f(xo) + (€ = x0) f'(xo) + (€ = x0)2f" (xo) + - - (6.9)

Truncation of the series and solving for £ gives the first order Newton—Raphson
[51, 53] method (Fig.6.4)

PE . G2} (6.10)
S (xr)
and the second order Newton—Raphson method (Fig. 6.4)
3 f1Ge) £ =2 () f7 ()
Xppl = Xp — - . (6.11)
J(xr)
Fig. 6.4 Newton—Raphson
method h
2"order NR
%o X

18t order NR
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Fig. 6.5 Secant method

The Newton—Raphson method converges fast if the starting point is close enough
to the root. Analytic derivatives are needed. It may fail if two or more roots are
close by.

6.1.4 Secant Method

Replacing the derivative in the first order Newton Raphson method by a finite dif-
ference quotient gives the secant method [51] (Fig.6.5) which has been known for
thousands of years before [54]

Xy — Xr—1
=y — Fry) Tl 6.12
Tt =2 = SO T T T (0.12)

Round-off errors can become important as |f(x,) — f(x,—;)| gets small. At the
beginning choose a starting point xy and determine

2h
S T e R T @19

using a symmetrical difference quotient.

6.1.5 Interpolation

The secant method is also obtained by linear interpolation

pl) = = i+ =L (6.14)

r—1 Xy — Xr—1
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The root of the polynomial p(x,+;) = 0 determines the next iterate x,

1 Xy — Xr—1
r+1 — 7 XA Jr—1 — Xr=1Jr) = X — Jr 77—/
X (xr f; X1 fr) =% — f,

fr—l _fr fr_fr—l'

Quadratic interpolation of three function values is known as Muller’s method [55].
Newton’s form of the interpolating polynomial is

(6.15)

p(x) = fr + (x —x) flxr, x—1] + (6 = x.) (0 — x21) f x5 X1, Xr—2] (6.16)
which can be rewritten

p) = fr+ (x = x) fxr, X114+ (x — 57 fLxe, Xp—1, Xr 2]

+ (o — -1 (0 — xp) f L7, Xr—1, Xr 2]

= fr4 (=) e xro1 X2l + (06— X)) (FLe X 1]+ flxe, X —2] = fIxe—1, X—2])
= fr +A(x — x) 4+ B(x — x,)? (6.17)

and has the roots

= A:i: S (6.18)
T = T oV T B '

To avoid numerical cancellation, this is rewritten

1
=%+ — (—A+ /A2 _4B )
Xpg1 = Xr + 3B ( it
—2f,
—x ’ AT JAZ 4B )
x+A2—(A2—4Bf,)( + Y’
_2fr
A+ /A2 —4Bf,
The sign in the denominator is chosen such that x,.; is the root closer to x,. The

roots of the polynomial can become complex valued and therefore this method is
useful to find complex roots.

—x + (6.19)

6.1.6 Inverse Interpolation

Complex values of x, can be avoided by interpolation of the inverse function
instead

x =1 (6:20)
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Fig. 6.6 Root finding by y
interpolation of the inverse !
function Y= (x)
fo e / _
i - x=t )
f 1|~~~ 77 A
f P il b
XX g X, p X

Using the two points x,, x,_; the Lagrange method gives

y fr y r—1
p(y) = x,_ x> 6.21
(y) : fr—l fr g fr fr—l ( )

and the next approximation of the root corresponds again to the secant
method (6.12)

Xos1 = p(0) = x—"}f - fxi{ Lo+ —(j;‘_l v ’fl L. (6.22)

Inverse quadratic interpolation needs three starting points x,, x,_;, X,_» together
with the function values f,, f.—i, fr—» (Fig.6.6). The inverse function x = f 1y
is interpolated with the Lagrange method

p(y) = = fr-D— 1) S = fri2)(y— 1) .
(fr72 - frfl)(fr72 - fr) o (frfl - fr72)(fr71 - fr) o

O = frDO = fr2)

Xy (6.23)
(fr = fr=D(fr = fr=2)
For y = 0 we find the next iterate
fr—lfr fr—Zfr
1 = p0) = e r—
AR B ey T Y gy
frflfr72 (624)

VA AN A
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(@) g ® (fs Xs)

S

S

/ y ,E//(fz X) Y

(fy .x4) (fy .x4)

Fig. 6.7 (Validity of inverse quadratic interpolation) Inverse quadratic interpolation is only applica-
ble if the interpolating polynomial p(y) is monotonous in the range of the interpolated function
values f7 ... f3. (a) and (b) show the limiting cases where the polynomial has a horizontal tangent
at f1 or f3. (c) shows the case where the extremum of the parabola is inside the interpolation range
and interpolation is not feasible

Inverse quadratic interpolation is only a good approximation if the interpolating
parabola is single valued and hence if it is a monotonous function in the range of
frs fr—1, fr—2. For the following discussion we assume that the three values of x are
renamed such that x| < x, < x3.

Consider the limiting case (a) in Fig. 6.7 where the polynomial has a horizontal
tangent at y = f3 and can be written as

= f3)’
p(y) =x3+ (x1 — wm' (6.25)
Its value at y = 0 is
£ ( 3 )

0) = —xa)—3 = — . (6.26
p(0) = x3 + (x1 — x3) G R =M + (x3 — x1) TASAD (6.26)

If f1 and f5 have different sign and | 1| < | f3] (Sect.6.1.7.2) we find

_fF 3

11— —. 6.27
- fr 4 ©27

Brent [56] used this as a criterion for the applicability of the inverse quadratic
interpolation. However, this does not include all possible cases where interpolation is
applicable. Chandrupatla [57] gave a more general discussion. The limiting condition
is that the polynomial p(y) has a horizontal tangent at one of the boundaries x| 3.
The derivative values are
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dp,. . xfi-f) x3(f1— /f2) x] x]
A Py 0 Yy S S gy 0y Y Ay gy S
(6.28)
_ (2— /1 x(f3 = f)? e x(fs = f)* —xi(f— f)?
B=MUB—R) | (- f)? (fo— f1)?

_ (o=l —x1) [@—2 _ 5—1]
(f3—fOf3— 1f2)
%(y:ﬁ): x(f3 — f1) n x1(f3— f2) L X3

G- h—F  F-fh—1»  B-f BT
(6.29)

(f3— 1) [ x2(f3 — f1)? (f3 — f1)? (f3 — f2)? N }
_ X1

T | Bon? ko nE B p

_ (3=l —x) ( 1 )2_ 1
(L= —f|\@-1 1-¢

with [57]
X2 — X f2—f1
== = ==L 1 6.30
X3 — X =N (630)
X2 — X3 L= f
—1= P —-1= . 6.31
¢ X3 — X =N (031

Since for a parabola either f; < f, < fzor fi > f> > f3 the conditions for applica-
bility of inverse interpolation finally become

2 <¢ (6.32)
1—¢>(1—)? (6.33)

which can be combined into

1-J1—¢€ < |®| <5 (6.34)

This method is usually used in combination with other methods (Sect.6.1.7.2).

6.1.7 Combined Methods

Bisection converges slowly. The interpolation methods converge faster but are less
reliable. The combination of both gives methods which are reliable and converge
faster than pure bisection.
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Fig. 6.8 Dekker’s method r

f(x)

6.1.7.1 Dekker’s Method

Dekker’s method [58, 59] combines bisection and secant method. The root is brack-
eted by intervals [c,, b, ] with decreasing width where b, is the best approximation to
the root found and ¢, is an earlier guess for which f'(c,) and f (b, ) have different sign.
First an attempt is made to use linear interpolation between the points (b,, f(b,))
and (a,, f(a,)) where a, is usually the preceding approximation a, = b,_; and is
set to the second interval boundary a, = ¢,_; if the last iteration did not lower the
function value (Fig.6.8).

Starting from an initial interval [xo, x;] with sign(f(xg))=/ sign(f(x;)) the
method proceeds as follows [59]:

initialization

Si=fx1) fo= fxo)
if | fil < 1fol then {
b=x1 c=a=x
fh=f1 fc=fa=f0}
else{

b=xy c=a=x

h=rfo fe=rfa= N}

iteration
_ b—a
X =b- fbfb_fa
__ c+b
Xm = > -

If x, is very close to the last b then increase the distance to avoid too small steps
else choose x; if it is between b and x,,, otherwise choose x,, (thus choosing the
smaller interval)

b + dsign(c — b) ifabs(x; —b) <
X, =13 x,ifb+6 <xs <x,0rb—0>x5 > xp,
X, else
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Determine x; as the latest of the previous iterates xp...x,—; for which

sign(f (x)) = sign(f (x,)).

If the new function value is lower update the approximation to the root

fr:f(xr)
if 1f;] < | /¢l then {
a=b b=x c=x;

fa=F fo=Ff fe=fid

otherwise keep the old approximation and update the second interval boundary

it 1] = | /il then {
b=x a=c=x,
fhsz fazfczfr}

repeat until |c — b| < eor f, = 0.

6.1.7.2 Brent’s Method

In certain cases Dekker’s method converges very slowly making many small steps of
the order e. Brent [56, 59, 60] introduced some modifications to reduce such problems
and tried to speed up convergence by the use of inverse quadratic interpolation
(Sect. 6.1.6). To avoid numerical problems the iterate (6.24) is written with the help
of a quotient

Xryl = fbfc a+ fafc b
(fa_fb)(fa_fc) (fb_fa)(fb_fc)
fbfa
6.35
A AT A A (0:3)
=b+ L
q
with
=i (g (F-7)-e-a(5 1))
" fa fe \fe fe fe
fb(fa fv) fo(fo — fo)
= b_
P A A
_afp fe(fy = [ + DU fafo(fo = fo) + o fe(fe = f)1 + cfafo(fa — [b)
B faf?

(6.36)
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_ (fa ) (fb ) (fb ) _ fa= JUb = [ S — fa)
g=—(Z-1)(L-1)(L-1)=- .
fe Jfe fa faf?

(6.37)

If only two points are available, linear interpolation is used. The iterate (6.22)
then is written as

(a—b) )4
1 =b+ =b+ = 6.38
Xrtl fb_fafb p (6.38)
with
p=(a—b)% q=(%—1). (6.39)

The division is only performed if interpolation is appropriate and division by zero
cannot happen. Brent’s method is fast and robust at the same time. It is often recom-
mended by text books. The algorithm is summarized in the following [61].

Start with an initial interval [xg, x;] with f(xp) f(x;) <0

initialization
a=x9g b=x, c=a
fa:f(a) fb:f(b) fc:fa
e=d=b—a

iteration

If ¢ is a better approximation than b exchange values
if | fe| < | /5| then{
a=b b=c c=a
fa = fb fb = fc fc = fa}
calculate midpoint relative to b
Xm = 0.5(c — b)
stop if accuracy is sufficient
if |x,,| < e or f, = 0 then exit

use bisection if the previous step width e was too small or the last step did not improve

if e| < eor|fal <|fp| then{

e=d = x,}




6.1 Root Finding 109

otherwise try interpolation

else {
if a = ¢ then {
p:2X E q= fb_fa}
" fa fa
else {
So(fa = fb) Jo(fo = fe)
p = 2x, 2 b —a) 3

() () ()
Je Jfe Ja
make p a positive quantity
if p > O then {g = —q} else {p = —p}
update previous step width
s=e e=d

use interpolation if applicable, otherwise use bisection

if 2p < 3x,,q — |leq| and p < ]0.5 sq| then{

d:g}
else{e =d = x,,}
a=b fa:fb

if |d| > € then {
b=b+d)}
else {b = b + esign (x,,)}

calculate new function value
Jo = f(b)

be sure to bracket the root

if sign( f}) = sign(f,) then {
c=a fc = fa
e=d=>b-—a}

6.1.7.3 Chandrupatla’s Method

In 1997 Chandrupatla [57] published a method which tries to use inverse quadratic
interpolation whenever possible according to (6.34). He calculates the relative posi-
tion of the new iterate as (Fig.6.9).

X —=cC

b—c

I =
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Fig. 6.9 Chandrupatla’s f
method

X
1 fcfb fafc fbfa
= b —
b—c |:(fa Y S A Y A L Y o C]
_a—c [ fb + fafe (6.40)

_b_cfc_fafb_fa (fb_fa)(fb_fc).

The algorithm proceeds as follows:
Start with an initial interval [xg, x;] with f(xo) f(x;) < 0.

initialization

b=xy a=c=x

fb:f(b) fa:fczf(c)
t=0.5
iteration

xy=a+tb-—a)

Jr=fx)

if sign(f;) = sign(fa){
c=a fc = fa
a=x fa=F}
else{

c=b b=a a=x

fc:fb fb:fa fazft}

Xm = a fm = fa
ifabs (f;) < abs(f,){
Xm = b fm = fb}

tol = 2ep|xm| + €4

__ _tol
1= B
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if 4 > 0.5 or f,, = 0 exit

€= % D = Ja—Tb
—

ff7ﬁ7
ifl —/1T—-¢€<® < JE
t=do__fe_ycma_fu_ by
fo—ta fo=fc " b=a fe=fu f=To
else {t = 0.5}
ift <yt =1}
ift >0 —-1){t=1-1}

Chandrupatla’s method is more efficient than Dekker’s and Brent’s, especially for
higher order roots (Figs.6.10, 6.11 and 6.12).

6.1.8 Multidimensional Root Finding

The Newton—Raphson method can be easily generalized for functions of more than
one variable. We search for the solution of a system of n nonlinear equations in n
variables x;

VALCTRERE M)
f(x) = : =0. (6.41)

Sa(x1 - Xn)

The first order Newton—Raphson method results from linearization of

absolute error

60

iterations

Fig. 6.10 (Comparison of different solvers) The root of the equation f(x) = x2 — 2 is determined
with different methods: Newton—Raphson (a) (black squares), Chandrupatla (b) (indigo circles),
Brent (¢) (red triangles up), Dekker (d) (green diamonds), regula falsi (e) (blue stars), pure bisection
(f) (black dots). Starting values are x; = —1, xo = 2. The absolute error is shown as function of
the number of iterations. For x; = —1, the Newton—Raphson method converges against —/2
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absolute error
_
S
T
|

L | L
100
number of iterations

Fig. 6.11 (Comparison of different solvers for a third order root) The root of the equation f(x) =

(x — 1)3 is determined with different methods: Newton—Raphson (a) (magenta), Chandrupatla

(b) (orange), Brent (c¢) (blue), Dekker (d) (red), regula falsi (e) (black), pure bisection (f) (green).

Starting values are x; = 0, x = 1.8. The absolute error is shown as function of the number of
iterations

absolute error

0 50 100 150 200
iterations

Fig. 6.12 (Comparison of different solvers for a high order root) The root of the equation f(x) =
x2 is determined with different methods: Newton—Raphson (a) (orange), Chandrupatla (b) (blue
circles), Brent (¢) (black), Dekker (d) (green), regula falsi (e) (magenta), pure bisection (f) (red

dots). Starting values are x; = —1, xo = 2. The absolute error is shown as function of the number
of iterations
0=fx)=fx") +Jx)x-x" +--- (6.42)

with the Jacobian matrix

Oh ... 94
(9X| (9)6,,

J=| - ] (6.43)
O ... O

(9x 1 (9)«:”
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If the Jacobian matrix is not singular the equation

0=Ffx")+Jx")x-x% (6.44)
can be solved by

x=x" — (7)) £x0). (6.45)
This can be repeated iteratively

XD — xO (7 (xD))ex®). (6.46)

6.1.9 Quasi-Newton Methods

Calculation of the Jacobian matrix can be very time consuming. Quasi-Newton meth-
ods use instead an approximation to the Jacobian which is updated during each
iteration. Defining the differences

d® = xr+D _ x® (6.47)
y© ="ty — £(x") (6.48)

we obtain from the truncated Taylor series

fx"D) = £x) + Jx) "D — x7) (6.49)
the so called Quasi-Newton or secant condition

y" = Jx")d". (6.50)
We attempt to construct a family of successive approximation matrices J, so that, if
J were a constant, the procedure would become consistent with the quasi-Newton
condition. Then for the new update J,,; we have

Jrp1d® =y®, (6.51)
Since d, y are already known, these are only 1 equations for the n> elements of
Jr1. To specify J,4; uniquely, additional conditions are required. For instance, it is
reasonable to assume, that

Jipyu= Jou forallu L d”. (6.52)

Then J,, differs from J, only by a rank one updating matrix
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Joy1 = J, +ud"7, (6.53)

From the secant condition we obtain

Jrd® = 7,d7 +u@d”d"7) = y» (6.54)
hence
— r) _ (r)
u= VG (v J.d"). (6.55)

This gives Broyden’s update formula [62]

Jr+1 - Jr +

(r) "y gnT
g (¥ =07 a0, (6.56)

To update the inverse Jacobian matrix, the Sherman—Morrison formula [42]

A luv? A7!
S T 6.57
can be applied to have

—1_1 . N T
gl — -1 J; aoE (y( ) — J.d¢ )) de )T‘Ir
r+1 — Y T 1+ ;d(r)ijl ( " _ 7 d(r))

ld®? ro Yy "
r d(")TJr_]y(”

6.2 Function Minimization

Minimization or maximization of a function® is a fundamental task in numerical
mathematics and closely related to root finding. If the function f (x) is continuously
differentiable then at the extremal points the derivative is zero

o

e (6.59)

Hence, in principle root finding methods can be applied to locate local extrema of
a function. However, in some cases the derivative cannot be easily calculated or the

2In the following we consider only a minimum since a maximum could be found as the minimum

of — f(x).
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function even is not differentiable. Then derivative free methods similar to bisection
for root finding have to be used.

6.2.1 The Ternary Search Method

Ternary search is a simple method to determine the minimum of a unimodal function
f(x). Initially we have to find an interval [ag, by] Which is certain to contain the
minimum. Then the interval is divided into three equal parts [ay, co], [co, do]l, [do, bo]
and either the first or the last of the three intervals is excluded (Fig.6.13). The
procedure is repeated with the remaining interval [a;, b;] = [ao, dy] or [a;, b1] =
[co, bo].

Each step needs two function evaluations and reduces the interval width by a
factor of 2/3 until the maximum possible precision is obtained. It can be determined
by considering a differentiable function which can be expanded around the minimum
Xo as

2
F) = fxo) + wf”(m) . (6.60)

Numerically calculated function values f(x) and f(x¢) only differ, if

(x — x0)?

— "(x0) > em f (x0) 6.61)

which limits the possible numerical accuracy to

Fig. 6.13 Ternary search
method
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10 " T T T T T T
sk f()=1+0.01%x"+0.1%x" 3

absolute error

number of iterations

Fig. 6.14 (Ternary search method) The minimum of the function f(x) = 1 +0.01x% + 0.1 x* is
determined with the ternary search method. Each iteration needs two function evaluations. After
50 iterations the function minimum f,;, = | is reached to machine precision €y &~ 1071°, The
position of the minimum X, cannot be determined with higher precision than /g3 ~ 10-8 (6.63)

2 f(xo0)
S (xo0)

e(xp) = min|x — xo| = EM (6.62)

and for reasonably well behaved functions (Fig. 6.14) we have the rule of thumb [63]

e(x0) ¥ V/Eu. (6.63)

However, it may be impossible to reach even this precision, if the quadratic term
of the Taylor series vanishes (Fig. 6.15).
The algorithm can be formulated as follows:

iteration

if(b — a) < ¢ then exit
c:a—l—%(b—a) d:a—i—%(b—a)
fe=f©) fa=f(d)

if f. < fathenb =delsea =c

6.2.2 The Golden Section Search Method (Brent’s Method)

To bracket a local minimum of a unimodal function f(x) three points a, b, ¢ are
necessary (Fig. 6.16) with

fla)> fb) f(c)> f(b). (6.64)
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10 T T T T T
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number of iterations

Fig. 6.15 (Ternary search method for a higher order minimum) The minimum of the function
f(x)y=140.1 x* is determined with the ternary search method. Each iteration needs two function
evaluations. After 30 iterations the function minimum fui, = 1 is reached to machine precision
em ~ 10710, The position of the minimum xpi, cannot be determined with higher precision than

Yy ~ 1074

a

€ b c X

Fig. 6.16 (Golden section search method) A local minimum of the function f(x) is bracketed by
three points a, b, c. To reduce the uncertainty of the minimum position a new point ¢ is chosen in
the interval a < £ < c¢ and either a or ¢ is dropped according to the relation of the function values.
For the example shown a has to be replaced by ¢

The position of the minimum can be determined iteratively by choosing a new
value £ in the interval ¢ < £ < ¢ and dropping either a or ¢, depending on the ratio
of the function values. A reasonable choice for £ can be found as follows (Fig.6.17)
[63, 64]. Let us denote the relative positions of the middle point and the trial point as

b—a c—b B b—a §—b
c—a_ﬁ c—a_l p c—b 1-0 c—a_t'
f-a_¢&-btb-a_ .4 (6.65)

c—a c—a
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i B 1B X ! B 1-p! X
= 5 —
et + APt | , B+t 1Bt
Fig. 6.17 Golden section search method
The relative width of the new interval will be
_ b—
=8 _U—f-1) o T_ 8 ifa<E<b (6.66)
c—a c—a
E—a c—>b .
=@+ or =(1-p0) ifb<é<ec. (6.67)
c—a c—a
The golden search method requires that
—2b —b)— (b -
f=1-23="1 _=h-0b-a (6.68)

c—a c—a

Otherwise it would be possible that the larger interval width is selected many times
slowing down the convergence. The value of ¢ is positive if c —b > b —a and
negative if ¢ —b < b — a, hence the trial point always is in the larger of the two
intervals. In addition the golden search method requires that the ratio of the spacing
remains constant. Therefore we set

lfﬁz_ttﬂz_l:ﬂ ifa<€<b (6.69)
b L ! fp<e<ec (6.70)

-3 1-p—t 8
Eliminating ¢ we obtain for a < £ < b the equation

(B-1

3 B*+pB-1)=0. (6.71)
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Besides the trivial solution § = 1 there is only one positive solution

5-1
8= \/_T ~ (0.618. (6.72)

For b < ¢ < ¢ we end up with

B _
m(ﬁ -38+1)=0 (6.73)

which has the nontrivial positive solution

345
8= Tf ~ 0.382. (6.74)

Hence the lengths of the two intervals [a, b], [b, c¢] have to be in the golden ratio
= %3 ~ 1.618 which gives the method its name. Using the golden ratio the
width of the interval bracketing the minimum reduces by a factor of 0.618 (Figs. 6.18
and 6.19).

10 T T T T T T T
10° B f(x)=1+0.01%x +0.1%x" [
100 - R R h
8 3E g ¥ ¥R g E
= 107 M o "V“oou —
b E R ® \Ao"\;o & o
i‘:’, 10°F v [P X Ko E
2 10_9 E o h] o °°v°°’-‘;c:c=cs E
10 F Mo o 16| 3

min
iy *
10—18 . | . | . | . I | . E
0 10 20 30 40 50 60

number of iterations

Fig. 6.18 (Golden section search method) The minimum of the function f(x) = 1 +0.01x% +
0.1 x* is determined with the golden section search method. Each iteration needs only one function
evaluation. After 40 iterations the function minimum fni, = 1 is reached to machine precision
em ~ 10710, The position of the minimum xp,;, cannot be determined to higher precision than

Jem ~ 1078 (6.63)
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10 " " T " T
f(x)=140.1%x" :

absolute error

number of iterations

Fig. 6.19 (Golden section search for a higher order minimum) The minimum of the function
f(x) = 14 0.1x*is determined with the golden section search method. Each iteration needs only
one function evaluation. After 28 iterations the function minimum fpj, = 1 is reached to machine
precision g3 &~ 10710, The position of the minimum xy;;, cannot be determined to higher precision
than /23 ~ 1074

The algorithm can be formulated as follows:

if ¢ —a <  then exit

if (b —a) > (c — b) then {

x =0.618b+0.382a

Jo=fx)

if fo < fpthen{fc=0b b=x fo=/fp fp=f}
elsea=x f,=f}

if (b —a) < (c — b) then {

x =0.6180+0.382¢

Jo=fx)

if fo < fpthenfa=b b=x fo=1Ff, fo=fc}
elsec=x f.=f}

To start the method we need three initial points which can be found by Brent’s
exponential search method (Fig. 6.20). Begin with three points

ag,bg =ag+ h,co+ 1.618h (6.75)

where h is a suitable initial step width which depends on the problem. If the minimum
is not already bracketed then if necessary exchange a( and by to have

flao) > f(bo) > f(co). (6.76)

Then replace the three points by
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Fig. 6.20 Brent’s f(x)
exponential search

ai=by by =cy c1 =co+ 1.618(cy — by) (6.77)
and repeat this step until

fby) < fen) (6.78)
or n exceeds a given maximum number. In this case no minimum can be found and
we should check if the initial step width was too large.

Brent’s method can be improved by making use of derivatives and by combining
the golden section search with parabolic interpolation [63].

6.2.3 Minimization in Multidimensions

We search for local minima (or maxima) of a function
h(x)

which is at least two times differentiable. In the following we denote the gradient
vector by

Togy — 3_’1...3'1)
g (X)_(axl’ ox, (6.79)

and the matrix of second derivatives (Hessian) by

82
H = h). 6.80
(3xi 8)(]- ) ( )
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Fig. 6.21 (Direction set
minimization) Starting from

an initial guess x¢ a local y
minimum is approached by

making steps along a set of

direction vectors s, @

The very popular class of direction set methods proceeds as follows (Fig.6.21).
Starting from an initial guess X, a set of direction vectors s, and step lengths A, is
determined such that the series of vectors

X1 =X + Arsr (681)
approaches the minimum of /(x). The method stops if the norm of the gradient

becomes sufficiently small or if no lower function value can be found.

6.2.4 Steepest Descent Method

The simplest choice, which is known as the method of gradient descent or steepest
descent? is to go in the direction of the negative gradient

S, = —g, (6.82)
and to determine the step length by minimizing / along this direction
h()) = h(x, — \g,) = min. (6.83)

Obviously two consecutive steps are orthogonal to each other since

0
0= S-h(X 1 = AB =0 = —8/1.18- (6.84)

3Which should not be confused with the method of steepest descent for the approximate calculation
of integrals.
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Fig. 6.22 (Function
minimization) The minimum
of the Rosenbrock

function A(x, y) =

100(y —x2)% 4+ (1 — x)?is
determined with different
methods. Conjugate (CG)
gradients converge much
faster than steepest descent
(SD). Starting at

(x, ) =1(0,2),
Newton—Raphson (NR)
reaches the minimum at

x = y = | within only 5
iterations to machine
precision

function value

absolute gradient

absolute error of minimum position
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This can lead to a zig-zagging behavior and a very slow convergence of this method

(Figs.6.22 and 6.23).
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X X X
0 1 2 0 1 2 0 1 2
0 | | ] | | | | | | | | |
y 1 |
2 _|

Fig. 6.23 (Minimization of the Rosenbrock function) Left Newton—Raphson finds the minimum
after 5 steps within machine precision. Middle conjugate gradients reduce the gradient to 4 x 10~ !4
after 265 steps. Right The steepest descent method needs 20000 steps to reduce the gradient to
5 x 10714, Red lines show the minimization pathway. Colored areas indicate the function value
(light blue < 0.1, grey 0.1...0.5, green 5...50, pink > 100). Screen shots taken from problem 6.2

6.2.5 Conjugate Gradient Method

This method is similar to the steepest descent method but the search direction is
iterated according to

So = —8o (6.85)
Xrt1 = Xp + Arsr (686)
Sr41 = —&ry1 + ﬂr-Hsr (687)

where )\, is chosen to minimize /(x,;) and the simplest choice for 3 is made by
Fletcher and Rieves [65]

92
Brr = 24 (6.88)
g

r

This method was devised to minimize a quadratic function and to solve the related
system of linear equations, but it is also very efficient for more complicated functions
(Sect.5.6.4).

6.2.6 Newton—Raphson Method

The first order Newton—Raphson method uses the iteration

X1 =X — H(x) " 'g(x,). (6.89)
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The search direction is

s=H'g (6.90)
and the step length is A = 1. This method converges fast if the starting point is close

to the minimum. However, calculation of the Hessian can be very time consuming
(Fig.6.22).

6.2.7 Quasi-Newton Methods

Calculation of the full Hessian matrix as needed for the Newton—Raphson method
can be very time consuming. Quasi-Newton methods use instead an approximation
to the Hessian which is updated during each iteration. From the Taylor series

h(x) =h0+bTx+%xTHx+~-~ (6.91)
we obtain the gradient

gx)=b+Hx, + - =gX_)+HX —X—)+---. (6.92)
Defining the differences

d =x41 — X, (6.93)
Yr =8+1 — 8 (6.94)

and neglecting higher order terms we obtain the quasi-Newton or secant condition
Hd, =Yy,. (6.95)

We want to approximate the true Hessian by a series of matrices H, which are updated
during each iteration to sum up all the information gathered so far. Since the Hessian
is symmetric and positive definite, this also has to be demanded for the H,.* This
cannot be achieved by a rank one update matrix. Popular methods use a symmetric
rank two update of the form

H., | = H, + ouu’ + gvv’. (6.96)
The Quasi-Newton condition then gives

Hyp1d, = Hod, + a@'d)u+ B d,)v =y, (6.97)

4This is a major difference to the Quasi Newton methods for root finding (6.1.9).
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hence H,d, — y, must be a linear combination of u and v. Making the simple choice
u=y, v=H.d, (6.98)

and assuming that these two vectors are linearly independent, we find

1 1
="y T @Ha) (€59
1 1

T @ld)  (7d)

(6.100)

which together defines the very popular BFGS (Broyden, Fletcher, Goldfarb, Shanno)
method [66-69]

Yrer . (Hrdr)(Hrdr)T

H,\i = H,
! *yTq, d” H.d,

(6.101)

Alternatively the DFP method by Davidon, Fletcher and Powell, directly updates the
inverse Hessian matrix B = H~! according to

dd’  (By)(By)"

B,i1 =B, +
! yid, Y/ Bry:

(6.102)

Both of these methods can be inverted with the help of the Sherman—Morrison
formula to give

d, — Bryr)drT +d,(d, — BYr)T _ d, — BrYr)Ty

— T
Byyi =B, + a a4 6109
(yr — Hrdr)yz- +y,(y, — Hd)"  (y, — Hd,)d,
Hr+1 =H, + T - T 2 Yryf
Yr dr (yr dr)
(6.104)
Problems

Problem 6.1 Root Finding Methods

This computer experiment searches roots of several test functions:
fx)=x"-2 n=1,2,3,4 (Fig.6.10)
f(x) = 5sin(5x)
f@) = (cos(2x))* —
f) =5 (VEF2-1)
f(x)=e*Inx
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f(x) = (x — 1)® (Fig.6.11)

f(x) = x» (Fig.6.12)

You can vary the initial interval or starting value and compare the behavior of
different methods:

bisection

regula falsi

Dekker’s method

Brent’s method
Chandrupatla’s method
Newton—Raphson method

Problem 6.2 Stationary Points

This computer experiment searches a local minimum of the Rosenbrock function’
h(x, y) = 100(y — %) + (1 — x). (6.105)

e The method of steepest descent minimizes /4 (x, y) along the search direction

s = —g" = —400x (x2 — y,) — 2(x, — 1) (6.1006)
s = —g" = —200(y, — x}). (6.107)

e Conjugate gradients make use of the search direction
s = —g" 4 8,501 (6.108)
s;") — _g;m + ﬂns_‘(,"’l). (6.109)

e The Newton—-Raphson method needs the inverse Hessian

1 hyy, —h
H™' = oo 6.110
det(H) (_hxy hxx ) ( )
det(H) = hychyy — 3, (6.111)
By = 1200x* — 400y +2 hyy =200 h,y = —400x (6.112)

and iterates according to

(x"“) = (x) —H! (g’,i). (6.113)
yl‘l+1 yn qy

You can choose an initial point (xg, yo). The iteration stops if the gradient norm
falls below 10~ or if the line search fails to find a lower function value.

5 A well known test function for minimization algorithms.



Chapter 7
Fourier Transformation

Fourier transformation is a very important tool for signal analysis but also helpful
to simplify the solution of differential equations or the calculation of convolution
integrals. In this chapter we discuss the discrete Fourier transformation as a numer-
ical approximation to the continuous Fourier integral. It can be realized efficiently
by Goertzel’s algorithm or the family of fast Fourier transformation methods. Com-
puter experiments demonstrate trigonometric interpolation and nonlinear filtering
as applications.

7.1 Fourier Integral and Fourier Series
We use the symmetric definition of the Fourier transformation:

o0

Fw) = FIf1w) = J% e (7.1)

The inverse Fourier transformation

o0

1 .
f@0) =F1f10) = o fwe*dw (1.2)

decomposes f(¢) into a superposition of oscillations. The Fourier transform of a
convolution integral

[e¢]

gty = f() ®h(t) = fHh( —1hHdr (7.3)

—00
becomes a product of Fourier transforms:

1 o0 S, > . /
Jw) = — dr' f(t"e ! h(t — e =4t — 1)
A/ 27'(' —00 —00
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=27 f(Ww)h(w). (7.4)
A periodic function with f(t + T) = f(¢)' is transformed into a Fourier series
- 27 1T
1) = it f(wy) withw, =n=—, flw,) == ne “'dr. (1.5
J0= 3 &) within =t f) = [ rwean as)

For a periodic function which in addition is real valued f(z) = f(¢)* and even
f(t) = f(—t), the Fourier series becomes a cosine series

F@) = fwo) +22 fw) cosw (7.6)

n=1

with real valued coefficients

T
fwn) = %/ £(t) coswyt dt. (7.7)
0

7.2 Discrete Fourier Transformation
We divide the time interval 0 < ¢t < T by introducing a grid of N equidistant points
ro .
tn:nAt:nN with n=0,1,...N —1. (7.8)

The function values (samples)

o= f(tn) (7.9)
are arranged as components of a vector
Jo
f= :
In-1
With respect to the orthonormal basis

60,n
e, = : , n=0,1,...N—1 (7.10)

§N71,n

I'This could also be the periodic continuation of a function which is only defined for 0 < ¢ < T.
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f is expressed as a linear combination

N-1
f=  fe. (7.11)
n=0

The discrete Fourier transformation is the transformation to an orthogonal base in
frequency space

1
N-1 e/
e, = elhe =] . (7.12)
n=0 :
el ¥ i (N=1)
with
27
wj = ?J. (7.13)
These vectors are orthogonal
N-1 1 —eiti=i27 . .
e e = UNEn = Tearmw =0 for j—jF0 (7.14)
e 0 N for j—j =0
ewjezj, = N(Sj_]j/. (715)

Alternatively a real valued basis can be defined:

2m . .
cos F]l’l J=0,1,... jmax
.27, . .
sin —jn J=12.. jma

Jmax = Y (@enN) s = 25 (0dd N). (7.16)

The components of f in frequency space are given by the scalar product

N-1 N-—1 N-1
~ L T e
fw/ = few/ = foe Wil = fue VTN = foeT VI (7.17)
n=0 n=0 n=0
From
N-1
fwjelet,l — fn/eflw,-tn/ 1wty — an (718)

j=0 n' wj
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we find the inverse transformation

1 N-1 1 N-1
= D fo e = f e 7.19
£ N;of,e N;)f (7.19)

7.2.1 Trigonometric Interpolation

The last equation can be interpreted as an interpolation of the function f(¢) at the
sampling points #, by a linear combination of trigonometric functions

N—1 .
f@ = % > 7 (eiz%")j (7.20)
Jj=0

which is a polynomial of

g=¢eTt’. (7.21)
Since
e —iwjt, _ —e i%jn — ei%’(N—j)n — ein,_,-tn (722)

the frequencies w; and wy_; are equivalent (Fig.7.1)

N—1 N-1
~ i v o ~
fon, = Zf e im (N=jn _ Z fue V=, (7.23)
n=0 n=0
Fig. 7.1 (Equivalence of w; 1
and wy _1) The two functions
coswt and cos(N — 1)wt
have the same values at the 05
sample points 7, but are very ’
different in between
O || ]
05 B
1 . ! . ! . ! . ! .
0 0.2 0.4 0.6 0.8 1

T
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frequency index j

Fig. 7.2 (Trigonometric interpolation) For trigonometric interpolation the high frequencies have
to be replaced by the corresponding negative frequencies to provide meaningful results between the
sampling points. The circles show sampling points which are fitted using only positive frequencies
(full curve) or replacing the unphysical high frequency by its negative counterpart (broken curve).
The squares show the calculated Fourier spectrum. See also Problem 7.1

If we use trigonometric interpolation to approximate f (¢) between the grid points,
the two frequencies are no longer equivalent and we have to restrict the frequency
range to avoid unphysical high frequency components (Fig.7.2):

SEALcu s ENL N odd
(7.24)
—z%fgfwjfz% %—1 N even.
The interpolating function (N even) is
N1
1’ .
f) = N fo, " even N (7.25)
.__ N
J=73
N1
1 : ~
f@ = N fu,€“" odd N. (7.26)
=

The maximum frequency is
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2n N
Wmax = 73 (7.27)
and hence
1 N B
Smax = %wmax = 3T = % (7.28)

This is known as the sampling theorem which states that the sampling frequency f;
must be larger than twice the maximum frequency present in the signal.

7.2.2 Real Valued Functions

For a real valued function

fo=1F (7.29)
and hence
B N—1 ' * o N—1 A B
f:j = (Z fne_wjtn) = Z fnelez" = fwfjw (7.30)
n=0 n=0

Here it is sufficient to calculate the sums for j = 0, ... N /2. If the function is real
valued and also even

fon =t (7.31)

=

N—1
fo, =D fane™i =" fre o = f (7.32)
n=0

n

Il
=}

and the Fourier sum (7.19) turns into a cosine sum

f L 742 Mflf T dd N =2M — 1
W= ———fu, t ———— . COS n o — —
P R T om—1’
(7.33)
f; 1f+1M_lf (W')+1f (nm) N =2M
n = S, Jw - w; COS | — — Juw, COS even =
M7 M m?!") T g T ST

(7.34)

which correspond to two out of eight different versions [70] of the discrete cosine
transformation [71, 72].
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Equation 7.34 can be used to define the interpolating function
M-I
[ 1 - 2rM
f@) = ﬁfw + S, cos (wjt + —— fu,, €OS WTI)

M oM
j=1

The real valued Fourier coefficients are given by

M—1

Jo,=fo+2 facos(w;t,) odd N =2M —1

Jo, = Jfo+2 fucos(wjty) + fucos(jm) even N =2M.

n=1

7.2.3 Approximate Continuous Fourier Transformation

We continue the function f (¢) periodically by setting

Sv = fo
and write
N-1 | !
Jo, = oo = Efo te Wifi e NNy EfN-
n=0

Comparing with the trapezoidal rule (4.13) for the integral

—iw;0 —jw; L T
J f 0) + IN —
€ ( ) € f N

ro T 1
—lw;t tdt%_ _
| e~ 4 3

+...+e7iwf7{/(N*1)f %(N— H + %f(T)

we find

Flwp = 2 ' it f(di & -
wij) = = e X —fu.
T N

135

(7.35)

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

which shows that the discrete Fourier transformation is an approximation to the
Fourier series of a periodic function with period T which coincides with f(¢) in the
interval 0 < ¢ < T. The range of the integral can be formally extended to +00 by

introducing a windowing function
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1 for 0<t<T

Wi(t) = [ 0 else (7.42)

The discrete Fourier transformation approximates the continuous Fourier transforma-
tion but windowing leads to a broadening of the spectrum (see p. 145). For practical
purposes smoother windowing functions are used like a triangular window or one of
the following [73]:

i (nf(zvfn/z)2
oV=h/2 o < 0.5 Gaussian window

W(t,) =e ?
W (t,) = 0.53836 — 0.46164 cos (1\2/71"1) Hamming window
W(t,) = 0.5 (1 —cos (%)) Hann window.

7.3 Fourier Transform Algorithms

Straight Forward evaluation of the sum

N—1
7= cos (21,”) fu+isin (2—”1,1) y (7.43)
Wi ~ N " N " ’

needs O (N?) additions, multiplications and trigonometric functions.

7.3.1 Goertzel’s Algorithm

Goertzel’s method [74] is very useful if not the whole Fourier spectrum is needed
but only some of the Fourier components, for instance to demodulate a frequency
shift key signal or the dial tones which are used in telephony.

The Fourier transform can be written as

N—-1
—iin = -5 -5 -5
fne ﬁ) +e fi+e f2 ... fN—2 +e fN—l -
n=0
(7.44)

which can be evaluated recursively

YN-1 = fn-1

i j 7.45
ynzfn+e_%])7n+l n=N-2,...0 ( )
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to give the result
fu; = Yo (7.46)

Equation (7.45) is a simple discrete filter function. Its transmission function is
obtained by application of the z-transform [75]

o0
u@ = wupz " (7.47)
n=0

(the discrete version of the Laplace transform) which yields

(@) = lf(—z_)ﬂ (7.48)
-

One disadvantage of this method is that it uses complex numbers. This can be avoided
by the following more complicated recursion

UNy+1 = UN =0
(7.49)
Uy, =f,,+2u,,+1coszﬁ’fk—u,,+2forn=N—1,...O

with the transmission function

u(z) 1

@) 1—z e%.fﬁ—%f)ﬂz

| (7.50)

_2m ; 2ri ;
l—ze N l—ze N/

A second filter removes one factor in the denominator

Y@ % (7.51)
u(z)

which in the time domain corresponds to the simple expression

2mi -
Yn = Up _eNjun-H-

The overall filter function finally again is (7.48).

v(2) _ 1
f@ 11—z FI

(7.52)




138

7 Fourier Transformation
Hence the Fourier component of f is given by

A @j
Jo, =yo=uog—ev uy.

(7.53)
The order of the iteration (7.44) can be reversed by writing

foy = fo.. RV iy = e FIND (foe%"‘fw—” - le) (7.54)

which is very useful for real time filter applications.

7.3.2 Fast Fourier Transformation

If the number of samples is N = 27, the Fourier transformation can be performed
very efficiently by this method.” The phase factor

i2m ;
—i5jm __ Jm
e v =Wy

(7.55)
can take only N different values. The number of trigonometric functions can be
reduced by reordering the sum. Starting from a sum with N samples

N—-1

Fy(fo.- fx-1) =D W/

n=0

(7.56)

we separate even and odd powers of the unit root

|=

2! 2 ! j(2m+1)
Ex(fo-- - fuo) = > foaWi"+ X o Wi "
m=0 m=0

|z

N_q N_q
2 2 im I 2 im (7.57)
z f2me / + WN Z f2m+le /

m=0 m=0

Fup(for fro- fue) + Wi Fnp(fi, f5- - fuo1)

This division is repeated until only sums with one summand remain

(7.58)

2There exist several Fast Fourier Transformation algorithms [76, 77]. We consider only the simplest
one here [78].
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For example, consider the case N = 8:

Fs(fo-.. f1) = Fa(fofafafe) + ngF4(f1f3f5f7)

Fa(fofofofs) = Fa(fofa) + Wi Fa(fa fs)
E(fifsfsf) = B(fifs) + Wi F(faf7)

Fy(fofa) = fo+ W3 fa
Fx(fafe) = fo+ W5 fo
FB(fifs) = fi+ W fs
B(f3/7) = f3+ Wi fr.

Expansion gives

Fs= fo+ Wifa+ W+ WiWf
+W{ f1 + W{W fs + Wi W) f3 + Wi W] W f7.

Generally a summand of the Fourier sum can be written using the binary
representation of n

n= L ;=1,2,48... (7.60)
in the following way:

fue NI = feT WO = W W (7.61)
The function values are reordered according to the following algorithm

(i) count from 0 to N-1 using binary numbers m = 000, 001, 010, . ..

(ii) bit reversal gives the binary numbers n = 000, 100, 010, . ..

(iii) store f, at the position m. This will be denoted as s,, = f,
As an example for N=8 the function values are in the order

50 fo
51 Ja
52 bis
83 Je
as|= 1Al (7.62)
S5 fs
S6 /3
57 S

Now calculate sums with two summands. Since sz can take only two different values
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Wi — 1 for j=0,2,4,6

(7.63)

(7.64)

27 | -1 forj=1,3,57
a total of 8 sums have to be calculated which can be stored again in the same
workspace:
fo+ fa so + Wis
Jo—fa so+ Wisy
L+ fe 52+ Wiss
L=Tfo| |24+ Wsss
fitfs ]| s+ Wiss
fi—fs 54+ Wj'ss
H+f s6 + Ws7
= f s6 + W7

Next calculate sums with four summands. WZ{' can take one of four values

1 for j=0,4
—1 for j=2,6
Wy for j=1,5
Wy for j=3,7

Wi =

The following combinations are needed:

fo+ fa+ 2+ fo) so + Wiss
fo+ fa—(f2+ fo) s+ Wiss
(fo— fo) + Wa(fo — fo) so + Wiss
(fo—f)—Walr—fo) | _ | s1+ Wis;
fi+f+B+ ) T sa + Wiise
i+ fs—=(f+ 1) 55+ Wis;
(fi = f5) EWa(fz — f2) 54+ Wose
(fi = f5) £ Walfs — f7) ss+ W/s;

The next step gives the sums with eight summands. With

1 j=0
Wy j=1
W82]=2
i_ ] Wi =3
Ws=1 1 =4
—Wg J_5
—Wg j=6
W j=1

(7.65)

(7.66)

(7.67)
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we calculate

fo+ fat A+ fo+ i+ fs+ (34 ) 50 + Wgss

fo+ fa— (A + fo) + Wi+ f5s — (f3+ f1) 51+ Wyss
(fo— f2) + Walfa — fo) + WG(f1 — f5) = Wa(f3 — f7) 52 + Wise
(fo— fa) = Walfa = fo) + W3 ((f1 — f5) £ Walfs = f)) | | s3+ Wgs
fo+ fa+ (At fo) — (L + f5+ (f3+ f1) | so+ Wi

fo+ fa—(f2+ fo) — Ws(f1 + f5s — (f3 + 7)) s1+ Wgss

(fo = f) + Walfa = fo) = Wg (1 — f5) £ Wa(f3 = f7) 52+ Wes6
(fo = 1) = Walfa — fo) — Wg (f1 — f5) £ Wa(f3 — f7) 53+ Wgs7

(7.68)

which is the final result.

The following shows a simple Fast Fourier Transformation algorithm. The number
of trigonometric function evaluations can be reduced but this reduces the readability.
At the beginning Data[k] are the input data in bit reversed order.

size:=2
first:=0
While first < Number_of_Samples do begin
for n:=0 to size/2-1 do begin
ji=first+n
k:=j+-size/2-1
T:=exp(-2*Pi*i*n/Number_of_Samples)*Data[k]
Data[j]:=Data[j]+T
Data[k]:=Data[k]-T
end;
first:=first*2
size:=size*2
end;

Problems

Problem 7.1 Discrete Fourier Transformation

In this computer experiment for a given set of input samples
T
fn:f(nﬁ) n=0...N—-1 (7.69)

e the Fourier coefficients

Foo=  fem owi=""j j=0..N—1 (7.70)
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are calculated with Gortzel’s method 7.3.1.
o The results from the inverse transformation

N—-1
1 ~
= s v 7.71
£ N jZEO fue ( )

are compared with the original function values f(z,).
e The Fourier sum is used for trigonometric interpolation with only positive
frequencies

N—1
[ = % > 7 (e"%‘"’)] : (1.72)
=0

e Finally the unphysical high frequencies are replaced by negative frequencies
(7.24). The results can be studied for several kinds of input data.

signal

\ |rectang|e F
) Il i | 1Y 'l
| il e

| | I . _ Il noise
l I ! | | | I: | ! !Gaussian : |:|

cutoff
l:oi.

Fig.7.3 (Screenshot from computer exercise 7.2) Top The input signal is rectangular with Gaussian
noise. Middle The Components of the Fourier spectrum (red) below the threshold (green line) are
dropped. Bottom the filtered signal is reconstructed (blue)
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Problem 7.2 Noise Filter

This computer experiment demonstrates a nonlinear filter.
First a noisy input signal is generated.
The signal can be chosen as

e monochromatic sin(wt)
e the sum of two monochromatic signals a; sin wt + a; sin wyt
e arectangular signal with many harmonic frequencies sign(sin wt)

Different kinds of white noise can be added

e dichotomous +1
e constant probability density in the range [—1, 1]
e Gaussian probability density

The amplitudes of signal and noise can be varied. All Fourier components are
removed which are below a threshold value and the filtered signal is calculated
by inverse Fourier transformation. Figure 7.3 shows a screenshot from the program.




Chapter 8
Time-Frequency Analysis

Fourier-analysis provides a description of a given data set in terms of monochromatic
oscillations without any time information. It is thus mostly useful for stationary sig-
nals. If the spectrum changes in time it is desirable to obtain information about the
time at which certain frequencies appear. This can be achieved by applying Fourier
analysis to a short slice of the data (short time Fourier analysis) which is shifted along
the time axis. The frequency resolution is the same for all frequencies and therefore it
can be difficult to find a compromise between time and frequency resolution. Wavelet
analysis uses a frequency dependent window and keeps the relative frequency reso-
lution constant. This is achieved by scaling and shifting a prototype wavelet - the so
called mother wavelet. Depending on the application wavelets can be more general
and need not be sinusoidal or even continuous functions. Multiresolution analysis
provides orthonormal wavelet bases which simplify the wavelet analysis. The fast
wavelet transform connects a set of sampled data with its wavelet coefficients and is
very useful for processing audio and image data.

8.1 Short Time Fourier Transform (STFT)

Fourier analysis transforms a function in the time domain f(¢) into its spectrum

Fw) = FLAIW) = \/%_W /_ : Fle = di 8.1)

thereby losing all time information. Short time Fourier analysis applies a windowing
function! (p. 133) e.g. a simple rectangle (Fig.8.1)?

! Also known as apodization function or tapering function.
There are two different definitions of the sinc function in the literature.
© Springer International Publishing AG 2017 145
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Fig. 8.1 (Rectangular window) The rectangular (uniform) window and its Fourier transform are

shown ford = 1
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Fig.8.2 (Triangular window) The triangular (Bartlett) window and its Fourier transform are shown

ford =1
_ Aforft| <d
We(t) = 0 else
W ) 2d sinwd 2d . (wd)
w) = = sinc(w
. V2r wd 2T
or triangle (Fig. 8.2)
_
W (1) = v fort <d
0 else
W) d 2(1 — coswd) . wd P
- = == simmc  —
i 2T w?d? 2T 2

8.2)

(8.3)

(8.4)

(8.5)
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Fig. 8.3 (Gaussian window) The Gaussian window and its Fourier transform are shown ford = 1

A smoother window is the Gaussian (p. 192) (Fig.8.3)

Ws(t) = ﬁexp ’—2%2] (8.6)
with

W) = ——exp {—@] 8.7)

V2T 2

For the Gaussian window the standard deviations®

o,=d o, = l (8.8)

d

obey the uncertainty relation*

o0, = 1. (8.9)

Since the Gaussian extends to infinity, it has to be cut off for practical calculations.
Quite popular are the Hann(ing) and Hamming windows (Fig. 8.4)

t 1 1 t
Wiann () = cos’ (;—d) = (5 + 5 cos %) (8.10)

3Here we use the definition o2 = ffooo dr W(0)e2. If instead 02 = ffooo dt |W ()22 is used then

— d .
o =75 and o, NeTE
“4For a Gaussian the time-bandwidth product is minimal.
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Fig. 8.4 (Hann and Hamming window) The Hann (full curves) and Hamming (dashed curves)
windows together with their Fourier transforms are shown for Az = 1. The Hamming window is
optimized to reduce the side lobes in the spectrum

W ) d sincwd
Hann\W) = —F/— 57
Vol — 2L

27 23 Tt

WHamm (t) = 5_4 + 5_4 cos g

4 2d2
i d 1-575
Weamm(w) = \/?Wsmcwd.
m )

™

For a general real valued function

- 1 00 *
Ww= —

kY, 2T —00

and for an even function

o0

W(w) = L W(t)e “dr =

W(e “dr =

1
V2T~ V2T s

8.11)

(8.12)

(8.13)

W(t)e“ dr = W(—w)

(8.14)

W()e“ d(—1) = W(—w).

(8.15)
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If W (¢) is real and even than this holds also for its Fourier transform
- - ~ 1 o
W(w)=Ww)=Ww)" = \/_2_7T /_Oo W (t) cos(wt)dt. (8.16)
The short time Fourier Transform
1 0 ‘
X(0.) = FIW' G = f0)0) = <= [ W= f0e™ai ®.17)

depends on two variables #y and w. Since it has the form of a convolution integral it
becomes a product in Fourier space, where

1 : 1 © . 1 © .
—— [ dtge 70 X (1, w) = —/ dtge 10’0 / dt W*(t — to) f (t)e !
\/27r/ 0 0 V21 J -0 0 V21— 0/

1 00 00 ) . .
= — / / drd(t — 19)e 010 Wt — 1o) f(r)e™ w0 e 7I!
27 J oo J—00

1 s . 00\ * . .
= ( / d(t — to)e U W (r — 19) / ) dr f(r)e wolgmiwt
27 NS NS

= W*(wo) f (W + w). (8.18)

For a real valued an even windowing function like the Gaussian (8.6) the STFT can
therefore be calculated from

X (fp, w) = dwoe“ W (wo) f(wo + w). (8.19)

=/
2
Alternatively, the STFT can be formulated as

1. % _
X (tg, w) = —e"‘””/ 1) Wt — 1p)e @) gy 8.20
(to, w) T N f@O Wt — 1) (8.20)

I ., /°°
= ——eh f(@) 2%t — ty)dt
kY 27 —00 0
which involves a convolution of f(¢) with the wave packet (Fig.8.5)
Q(t —19) = W(t — 1p)et =0 (8.21)

which is localized around #y. In frequency space the wave packet becomes a band
pass filter
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Fig. 8.5 (Gabor wave packet) Left Real (full curve) and imaginary (dashed curve) part of the wave
packet (8.21) are shown for a Gaussian windowing function with w = 5 and 2d* = 3. Right In the
frequency domain the wave packet acts as a bandpass filter at wy = w

~ 1 o0 . )
Qo) =—=  dre ' W()e

A/ 2 —00

o
=——  dte"“I'W(@)

kY, 2 —00

= W(wo —w)
1 oo . [e¢]
— dtge w00 f@) 2% — ty)dt
27 —00 —00
1 [ee) 00 . .
=— dt  d{t—1) f(t)e " Q21 — 1)
27 —00 —00
= f(wo) 2" (wo) (8.22)
1 . R . ~ ~
X(tg, w) = ﬁe"“’“ N duwoe™" f(wo)$2* (wo)
o0

dwoei(w+um)to f"(wo)(}* (WO)

dwoe™ f(wy — w)2* (wy — w).
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The STFT can be inverted by

. 1 . .
/ dwX (1, w)e™ = s / dt / dweOW*(r — 1o) f (1)e !
T

1
= E/dtW*(t —10) F(D278(t — tg) = V27 W*(0) £ (10) (8.23)

or alternatively

i 1. o0 -
/ dig / dwX (19, w)e’ = / dty | dw 1wt / W*@' — 1) f (e W dr’
—0oQ

N
=/dt0J% /_0; 218(t —tHYW*(t' — 1) f(t)dt’
= dtOJ%ZWW*(t—to) f() =27 f @) / W*(t)dt'. (8.24)

STFT with a Gaussian window is also known as Gabor transform [79] which is
conventionally defined as

o0

Gl f1(to, w) = / dt e~ eIt £ () (8.25)

—00
Example: Spectrogram

The STFT is often used to analyze audio signals. Let us consider as a simple example
a monochromatic signal, which is switched on at time t = 0

0 t<0

sin(wgt) t > 0. (8.26)

f(t)=l

Using a Gaussian window, the Fourier transform can be calculated explicitly (an
algebra program is very helpful)

o0

- 2002 .
X (tg, w) = dt e We==107/2d" gin (w,t)

2w At 0

— i it @—w) o =d>(@—w)?/2 (erf(iAtz(w —Wws) — to) B 1)
427 V2d

. . 2
+ L i) o —d /2 (erf (—ld W+w) - [0) — 1) . (8.27)
427 V2d
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Fig. 8.6 (3-d spectrogram) The squared magnitude of the STFT (8.27) is shown for ws = 5 and
2d =1

There are two contributions since the real function f (¢) contains oscillations with
+w,. The squared magnitude® | X (fy, w)|? is shown as a 3-d spectrogram in Fig. 8.6.
The width of the window determines the resolution both in time and frequency.
Neglecting interference terms, at resonance w = wy the squared magnitude rises
according to

1 to
X (tg, wy)|> = — erf -1 8.28
|X (o, wy)] 3or N (8.28)

and reaches its stationary value within a time of &~ 2d, whereas in the stationary state
at tp > d, the dependency on the frequency mismatch Aw = w — w; is given by a
Gaussian with a width of 20,, = +/2/d. The dependence of time and frequency res-
olution on the window width is shown qualitatively by 2-dimensional spectrograms
in Fig.8.7.

8.2 Discrete Short Time Fourier Transform

The continuous STFT is very redundant and not useful for the analysis of data which
are sampled at discrete times. Therefore we introduce a series of overlapping windows
centered at equidistant times #, = n At (Fig. 8.8)

W,(t) = WnAt —t). (8.29)

SThis is a measure of the spectral power distribution.
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2d2=0.25 2d2=0.5 2d2=1.0 2d2=2.0

Fig. 8.7 (Spectrograms with different window width A¢) The squared magnitude of the STFT
(8.27) is shown for wy = 5 and 2d? = 0.25, 0.5, 1.0, 2.0. For larger values of the time window d
the frequency resolution becomes higher but the time resolution lower

Assuming that the windowing function W, (t) = 0 outside the interval [z, —
d, t,+d] we apply (7.5) and expand W, (¢) f (¢) inside the interval as a Fourier series

o0
: s
W) =W, ) f(t) = il g om Withw,, =m— |t —t,] <d. 8.30
@) = Wa) f(@) = D & Gy Withwyy = m= |1 = 1] < (8.30)

m=—0oQ

We extend this expression to all times ¢ by introducing the characteristic function
of the interval

1 for|t—1¢t,| <d

0 else (8.31)

Xn(t) = [

gu(0) = Wa D) F(0) = X (1) D, € G- (8.32)

m=—0o0

The Fourier coefficients, given by the integral

Fig. 8.8 (Discrete STFT) ! 2d 3
Assuming that the .
windowing function | |

W, (¢) = 0 outside the

interval [t, —d, t, +d] we Wn—1 (1) Wn(t) Wn+1 (1)
apply (7.5) and expand

W, (¢) f (¢) inside the interval

as a Fourier series

n-1 n n+1
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ty+d

1 A
Gnm = 34 Wt —t,) f(t)e ' dt (8.33)
t,—d

obviously correspond to the STFT at times #,and frequencies wy,

1 e ) 1 tn+d )
X(ty, wp) = —— Wt —t,) f(t)e “nldt = — Wt —t,) f()e “n!ds
( W, ) \/27 - ( )f( )e m v d ( )f( )e
2d
= 5 - 8.34
Nera (8.34)

If the windows are dense enough such that there union spans all times, the signal can
be reconstructed by summation

GO =f@)  Wu) = X G- (8.35)

n n nm

This expression simplifies, if

W, (t) = const (8.36)

n

which is e.g. the case for triangular windows as well as the Hann and Hamming
windows with At = d (Fig.8.9).

For practical applications, we assume that the function g(#) has been sampled at
N equidistant times within the interval [#, — d, t,, + d]

2d
Tn’sztn—d—i—sﬁ s=0,1,...N —1 (8.37)

W, ()

Fig. 8.9 (Window functions with constant sum) For the triangular (Left) and the Hann and Ham-
ming (Right) window the sum , W, () becomes constant (dotted lines) if the windows are shifted
by half their width At = d
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m 2w
Wwj = E]v Wj(Tn,s —t,+d) = JSF (8.38)

and apply the discrete Fourier transformation method (p. 131)

N—1 N—1

~ _ —iw; (Ths—t,+d) __ —ijs2r

Gny = D Gy D =N g, oUW (8.39)
s=0 s=0

1 N—1 1 N—1N-1
~ ijs2E —ijs’ 2 ijsim

N n,que] Vo= N 9n,s'€ IEv et N = Gn,s- (8.40)

j=0 j=0 5s=0

Example: FM Signal
Figures 8.10 and 8.11 show the STFT analysis of a frequency modulated signal

£(t) = sin® (1) = sin (wot 4400 - coswlt)) (8.41)
wi
with a momentaneous frequency of
0P i
w(t) = E = wo(1 + asinwt) (8.42)

for carrier frequency g—; = 10kHz, modulation frequency “2"—7; = 25Hz(100 Hz) and
modulation depth @ = 0.3.

f [kHz]
I
20 —
10 —

0 — -

17 1 17T 1T 1T T 1

0 50
t [ms] f [kHZz]

Fig. 8.10 (STFT analysis of a FM signal) The figure shows screenshots from Problem 8.1. Left
spectrogram Right STFT spectra. Sampling frequency is 44100 Hz, number of samples 512, Hann
windows are used with a shift of 8 samples (0.18 ms) between neighbor windows. 6 ms time res-
olution and 1.1kHz frequency resolution are sufficient to resolve the 25 Hz modulation. The time
dependent spectra have their smallest width at the stationary points of the momentaneous frequency
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f [kHz] t[ms]
A A A
20 — =
10
10 —
0 — - 0 : .
1 1 1 T T 11T | | |
0 10 0 10 20
t [ms] f [kHZ]

Fig. 8.11 (STFT analysis of a FM signal) The figure shows screenshots from Problem8.1. Left
spectrogram Right STFT spectra. Sampling frequency is 44100 Hz, number of samples 512, Hann
windows are used with a shift of 2 samples (0.045ms) between neighbor windows. 6 ms time
resolution and 1.1kHz frequency resolution are not sufficient to resolve the 100 Hz modulation.
Only minimum and maximum frequencies are observed

8.3 Gabor Expansion

For the special case of rectangular windows with distance At = 2d°

W, (1) = Wr(t —2d n) = xu(1) (8.43)
W,(t) =1 = const (8.44)

we have
fO=g.@ (8.45)
= X ()€™ G (8.46)

n m=—oo

This equation expands f(¢) and its Fourier transform as linear combinations of
elementary “signals” which are located at ¢, in time and w,,in frequency

Bpm = Xn€“r". (8.47)

SFor simplicity, we do not normalize the window here.
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- 2d )

Ry m = —e @) gine d(w — wy) (8.48)
' V2w

f@) = Zhn,mgn,m f(w) = Zilnm.anm- (8.49)

A similar expansion is obtained if we use rectangular windows in Fourier space with
width and distance Aw [80]

—ity (W—wy)

ilnm (W) = Xm€

2Aw

V2r

and sample the spectrum at times

By (1) = sine (( — t,) Aw)eln’

™

h=n—— (8.50)
to obtain
F@) =D xn@ @) = D xn(@)e™" fon (8.51)
R Wi +Aw 5 )
nm f(w)elmndw. (8.52)

- 2Aw Wy —Aw
Gabor [79] discussed an expansion with Gaussian signals (Fig. 8.5). In general, how-
ever, the elementary signals are not orthogonal which makes the determination of the
coefficients a,, ,, complicated. Bastiaans [80, 81] introduced another auxiliary set of
elementary signals

Yoom = Yt — nAt)en! (8.53)

which are biorthogonal, i.e.

/ Yoot ORp i @)t = Oy S (8.54)

and allow the calculation of the Gabor expansion coefficients from a scalar product

/7:,111(t)f(t)dt = Z/anm’ﬁ:,mhnm(l‘)dr = dpm- (855)
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Determination of v for a given windowing function can be simplified by application
of the Zak transform [82]. Discrete versions of the Gabor transform [83] are popular
in signal, speech and image processing.

8.4 Wavelet Analysis

The STFT method uses constant frequency and time resolution. Therefore the lowest
frequency of interest determines the minimum width of the window whereas at
higher frequencies shorter time windows could be more appropriate to increase time
resolution while keeping the relative uncertainty in frequency constant (Fig.8.12).
This is the basic idea of the wavelet transform. Whereas STFT uses wave packets of
the form (8.21)

24y0(t) = W(t — tg)e ™) (8.56)

time time

PR T R U NS R PR R R R NI N PR T R N NI R
3 2 -1 0 1 2 3 -3 2 -1 0 1 2 3 3 2 -1 0 1 2 3
time time time

Fig. 8.12 (Morlet wavelets and STFT wave packets) Top STFT uses the same window for all
frequencies Bottom wavelets use a variable window width to keep the form of the wave packet and
the relative frequency resolution constant (only the real part is shown)
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where only the oscillating part is scaled with frequency w, wavelets scale the whole
function like in

r— 1 :
Q4,5 =W (—0) elwo(=to)/s (8.57)
N

or, more generally

1 t—t

2,,5(t) = T|‘I’ S (8.58)
1 o1 t—1t

.Q(w):—/ e_m—d/( O)d
27 J - s s

1 oosign s (st +0) 1
= — e WO (1) d (st + 19)
V2 —oosigns vV | |

. 1 e . L

= |s|e"“”°f/ e T (dt = \/|sle W (sw) (8.59)

T J -0

where a whole family of wavelets is derived from the “mother wavelet” ¥ (t) by
shifting and rescaling. The prefactor has been introduced to keep the norm invariant

/ |20, (Pt = / |uf( ) 2ar

= ﬁ / Oomgmup(ﬂ)ﬁd(sﬂﬂo) = / ¥ (") |*dt’. (8.60)

—oosigns

Closely related to the short time Fourier analysis is the Morlet (or Gabor) wavelet,
which is also very useful in quantum physics [84]. It is defined as’

oo _ 1 2] o
V0 = W = i exp |~ e (8.61)
2
V(W) = Wo(w — wp) = \/2 eXp[ d —(w— wo)Z] . (8.62)

The similarity of a signal f(¢) to a wavelet with scale s centered at ¢ is measured
by the correlation integral

1 o t—
C(to, QF (dt = —— T
(to, s) = / S (0)$2, (1) m/_m (

7The conventional normalization is f di|w())? = 1.

To
) f(t)dt (8.63)
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which becomes a product after Fourier transformation with respect to #,

~ 1 .
Cw,s)=—— Cltp, s)e “0dry
V2T
1 : 1 . iy N -
S die 0 dr—  do Js|Ft(sw)e W 0 gy Fwyel
NG 0e o W s|PT (sw) W' f(w)

= 27| dt do'FFGsw)e ™ dw” FWw)e 5w — W)W — W)
= 27fs| dw'¥F(sw)e ¥ Fw)el
= 27|s|¥*(sw) f (w). (8.64)

For the Morlet wavelet this becomes

[ 2 ~
C(w,s)=n"* 2|s|d exp [—d?(sw —wp)® fw)

2
(sd) w—%y Fw) (8.65)

=x'* 2s|d exp ’—

i.e. C(w, s) averages the spectrum f over a range with a width of o, = 1/sd around
w = wp/s and a constant ratio

_ 1 (8.66)

w()d '

g

w

w

8.5 Wavelet Synthesis

For data processing it is necessary to reconstruct the data from the wavelet coefficients
C(tps). This can be achieved with the help of the integral8

/oo - 1C(z )$24, .5 (H)dtod ldtd ! ' i) C(to,s)
— .S p s= - s —  — .8
o e S2 0 10,8 0 52 0 ,7|§‘| B 0
1 1 . - N -
=—— —ds dip dwelTONE (W) dw'e@ P (sw) f(w)
2 s?
1 1 o . C -
=—— —ds dig sdo"e“ TG s)  du 0T (sW) fw)
V2r 82
1 1 P - .,
_ 5 Zds du el ’lI/(w”s) dw"l’*(sw')f(w )271’6(0.), _ w//)
2T S

1 P -
=21  —ds sdueY 'Y (WP (W) f(W)
s

=27 %ds dw"e“" " (W) T (sw”) F (). (8.67)

8 A more rigorous treatment introducing the concept of frames in Hilbert space can be found in [85].
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If the admissibility condition is fulfilled, which states that the integral

c _/°° @l
— w< o0 (8.68)

00 w

exists and is final, then

/00 ldslf/(cus)lf/*(ws) = /OO i,dw/lf/(w/)li/*(w/) = Cy
oo S w

o0 —00
and we obtain
: /OO/OOIC(t )§2;, s (t)dtyd
27TClp oo oo S2 0,8 19,8 0as.

The admissibility condition implies that l17(0) = O and thus f dtW (1) = 0. Hence,
the Morlet wavelet (8.61) has to be modified’

f@ =

W (1) L v £ [ i wod” (8.69)
= expl——— —exp|— .
nda P T2 |¢ P 2

- d d? d?
¥ (w) = %Nd [exp ’—?(w — wo)zl —exp [—7@9 + wg)H (8.70)

3 —12
Ny = |:(1 + exp {—w’d’} — 2exp [—szdz})] . (8.71)

Another popular (continuous) wavelet is the “Mexican hat” (also known as Ricker
wavelet or Marr wavelet) which is given by the normalized negative second derivative
of a Gaussian (Fig.8.13)

2 12 1?
- 2dd w?d?

Example: Wavelet Analysis of a Nonstationary Signal

The following example shows screen shots from Problem 8.2. The signal consists of
two sweeps with linearly increasing frequency of the form

fia(t) = sin [wl,zt + %tz] (8.74)

This correction is often neglected, if the width is large.
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0.8
Ho:6
;:: 104 z§
Ho02
0

Fig. 8.13 (Mexican hat wavelet) Left The mexican hat wavelet is essentially the second derivative
of a Gaussian. Right Its Fourier transform is a band pass filter around wy,5, = +2/d

and another component which switches between a 5kHz oscillation and the sum of
a 300Hz and a 20kHz oscillation at a rate of 20Hz

sin(waorpzt) + sin(wsgom 1) if sin(wyon ) < 0

sin(wskpt) else. (8.75)

f3 () =

The signal is sampled with a rate of 44kHz and analyzed with Morlet wavelets
over 6 octaves (Fig. 8.14). The parameter d of the mother wavelet (8.61) determines
frequency and time resolution. The frequency wy of the mother wavelet is taken as
the Nyquist frequency which is half the sampling rate. The convolution with the
daughter wavelets

W, (1) = %W = (8.76)

m Sm
is calculated at 400 times with a step size of 0.726 ms (corresponding to 32 samples)
t, =ty +nAt (8.77)
and for 300 different values of the scaling parameter

s = 1.015™. (8.78)

In a logarithmic plot, the relative frequency uncertainty has the same size for all
stationary signals.
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Fig. 8.14 (Wavelet analysis)
Top for d = 1 ms the
frequency resolution is high
for the stationary parts of the
signal. Time resolution is
low. Middle for d = 0.25 ms
the pulsating component at
300Hz can be resolved but
time resolution is still poor.
Bottom For d = 0.0625 ms
time resolution is sufficient
to show all the modulations
while frequency resolution is
rather poor
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8.6 Discrete Wavelet Transform and Multiresolution
Analysis

The continuous wavelet transform is very redundant and time consuming. Multires-
olution analysis provides a way to define a discrete set of orthogonal wavelets, for
which the wavelet transform can be calculated very efficiently from a scalar product.
A discrete wavelet transform uses discrete values of shift and scaling parameters

s=a ™ ty=na"b (8.79)
to define the daughter wavelets'?

W, (t) = a"*W (a™t —nb . (8.80)

For integer a, in most cases a = 2, this equation defines wavelets of a multireso-
lution analysis (Fig. 8.15) where m corresponds to the resolution 2.

8.6.1 Scaling Function and Multiresolution Approximation

At the basic resolution 2° the function f(¢) is approximated as a linear combination

FO~ O = fo,Pon) (8.81)

n

of a scaling function and its translations,

Fig. 8.15 (Multiresolution \
analysis) Data are analyzed s-1
with decreasing time
window At = b/2™
24
23
22
o1
20
0 bt

10Equation 8.76, in contrast, describes the continuous wavelet transform, which has to be discretized
for numerical calculations.
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Py, =Pt —nb) ,n=0,%£1... (8.82)

which is chosen [86, 87] such, that the @, ,form an orthonormal basis of the space
of linear combinations

Vo = span{®q ,,n =0, £1, ...} (8.83)

/ ®g, (o ()dt = 6, . (8.84)
The best approximation is found by minimizing the norm

WF@) = fonPoa®II* = / FHO = D [ a P ) (1) — Z Jow Pow (1))dt

— [1rian - > o, [ rrouwd =3 o [ g0 f0di+ a0l (8.85)

hence by choosing

for = / oF (1) f()dt (8.86)

i.e., the orthogonal projection of f () onto V. Approximation at the higher resolution
2™ similarly is given by linear combination

FORFDO™ =" frunPualt) (8.87)

of the scaled functions

@y =2"2D (2"t — nb) (8.88)
which form an orthonormal basis for the space

Vi = span{®,, ,, n =0, £1, ...} (8.89)
since

/dﬁi’n(t)dﬁm,nr(t)dt =2" / ®*(2"t — nb)® (2"t — n'b)dt

dr’
=" / (1 — nb)d (1’ — n/b)z—m = G- (8.90)

The sequence of spaces V,, is called a multiresolution approximation to the space of
square integrable functions L*(R), if [86]
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i ---Ccvacvycvicva... (8.91)
o0
(i) V,, is dense in L>(R) (8.92)
m=—o00
o0
(iii) V,, = {0}. (8.93)
m=—0oQ

Property (ii) has as a consequence, that the approximations £ (¢) converge to f (t)
for large m. Hence, due to orthonormality

o0

f0 = @) @, , () f(Hdt — f(1) (8.94)

n —00

and the projection operator onto V,,

Pu=  @u, (@5, (1) =2" Q" —nb)®* (2"t —nb) - 1  (8.95)

n n

converges to the unit operator. Now, with a > 0 choose the function

lif —a<x<a
Ja(t) = [ 0 else. (8.96)
Then,
(Pufap)t) = ®Q2"t —nb)  2"di'®*(2"t' —nb)
2"a
= @ (2"t — nb) @* (' — nb)dt'. (8.97)
n —2mq
For large a, the integrals become more and more independent on n, and
o*(t"ydt' ®Q2"t —nb) — 1. (8.98)
—00

n
Now we integrate the sum over one period 0 < ¢ < 27"p and find

27"p (1—n)b [e'9]
@ (2"t — nb)dt = D)2 "dr =27" @D (t)dt

0 n n —nb —00

(8.99)
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and therefore

(/ cb*(t’)dt’) (/ @(t’)dt’) =b (8.100)

or
o0
‘ / @ (tHdt
—00

as well as

= 1 * ’ o b
|®(0)] = N ’/OO¢(I Ydt ‘ = Jg' (8.102)

Fourier transformation of (8.84) gives

/A (8.101)

S :/d)*(r —nb)® (1 — n'b)dt
— L/dt/d;*(w)efiw(tfnb)dw/é(w/)eiw’(tfn’h)dw/
2w

= /du)du)/d;*(w)(js(w/)ei(‘u"*w’n/)hcg(w_w/) :/dwlé(w)lzeiw(nfn’)h

0 27 (j+1)/b 270/b 0
_ / dwlqs(w)lzei“’(””’,)hzf dw Z |qs(w+2ﬂ_j/b)|26—iwAnh
im0 27j/b 0 j=—o00
27 /b
- / dwF (w)e~wAnb. (8.103)
0

F(w) is periodic with period £29 = 27/b and can be represented as a Fourier sum
oo oo
F(u]) — Z Fneﬂﬂ'nw/ﬂo — Z Fnelnbu} (8104)
n=—0oo n=—00

where the Fourier coefficients

1 20 ) b 27 /b .
Fn — _/ F(w)e—1277nw/90 — _/ F(w)e—mbu (8.105)
QO 0 2 0

are found from comparison with (8.103)

Fo=5bu0. (8.106)
Iy
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Finally, evaluation of the Fourier sum (8.104) gives

Fw) = [®w+ R = Qi (8.107)

. 0
J

which is the equivalent of the orthonormality of @, in Fourier space.
Equation8.91 implies that &,, ,can be represented as linear combination of the
D11, Starting from

D) = Poot) =  hyPr1a(t) =2  h,® 2t — nb) (8.108)

n n

scaling and translation gives

gzjm,n(l‘) = hn’72n(pm+l,n’ ®). (8.109)

n'

Fourier transformation of (8.88) gives

- . - 1 . -
_ A 2nmiw/$2,, _ —2nmiw/$2,, m
D n(w)=ce D ow) = —We D(w/2™) (8.110)
- 1 -
D, ,n(w) = men(w 2) (8111)
+1 7 /
with

m 2m m

2n=2"" =2"02 (8.112)

and (8.108) becomes

P (w) = %e—z"”iw/ﬂlcﬁ(w/zm) = My(w/2)P (w/2) (8.113)

I, .
My(w/2) = ﬁe—””l(wm/ﬂo (8.114)
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is §£2p—periodic. Similarly, we find

= 4 hn —2nmi(w/2"tNY /20 F 1
Bpo(@) = D ha®yin(w) = D —=e TR (27
n n 2m+1

1 N
= WMQ((.«J/2"1+1)(D(LU/2’"+1). (8.115)

Equation 8.113 can be iterated to obtain

B (w) = Mo(w/2)P(w/2) = Mo(w/2)Mo(w/HD(w/4) = ...
:HMo(w/Zj)qS(O) =HM0(w/2j)‘/i. (8.116)
i i1 27

This equation shows that knowledge of M is sufficient to determine the scaling
function (see also p. 182).
From the orthogonality condition (8.107) we obtain

1 3 Q
o= Z]: |®(w+ j20)|° = Z]: ‘Mo (w/Z + 17)

=D IMo(w/2 + jR0)I*|D /2 + jQ0)

J
d (w/2+ (j + %) 90>

2 2

@ (w/Z—i—j%)

2 2

+;‘Mo (w/2+ (j + %) szo)

= |Mo(w/2)1* D 1B (w/2+ j20)
J

£29
+ Mo W/2+7

2
DB (w + 20)/2+ jR20)

2
j| . (8.117)

J
29
MQ w/2+ 7

Example: Rectangular Scaling Function

_ ! My(w/2)?
_30|0(w/)|+

The simplest example of a scaling function is the rectangular function

1 bl b
o) =17 for" 2)52 (8.118)
0 else
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with the scaled and translated functions

1 1 b
Bou(1) = Bt — nb) = 7 for}t—(n+§ b|§§

o (8.119)
€lSe
1 pal k| b
G ,(1) = V2021 —nb)y = V2 f"r’to (;’Jrz sl<s (8.120)
clse
1 (gl | b
By n(t) = N2"D 2"t —nb) = O forli — (n+4 il < .
0 else
(8.121)

Obviously, the @,,,(¢) for fixed m are orthonormal and can be represented as linear
combination

1 1
¢m,n(t) = E¢m+l.2n(t) + ﬁq)m-‘rlln-‘rl(t)‘ (8122)

V.. 1s the space of functions which are piecewise constant on intervals |t — (n +
1/2)b/2™| < b/2"*!. Figure 8.16 shows the approximation of the parabola f (1) =
12 by functions in Vj ... V3.

The Fourier transform of the scaling function is

- 1 2sin <2 b b .
Bw) = —— 2 b2 Vb e “E i (8.123)
V27 wy/b V2r 2

Fig. 8.16 (Approximation
by piecewise constant 4+ .
functions) The parabola X
f(t) = 1% (dashed curve) is /7
approximated by linear .
combination of orthonormal X
rectangular functions (8.121)
frgcgt) = Dy (1)

2 P () f(D)dt for =
m = 0 (black) m = 1 (red) I
m =2 (blue) m = 3 (green) - b

f(t)
\—1
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and from
& (w) = 1 2[2sin (wTh) cos (wa)]e—iwb/Z —é (w_b) cos (w_b) eiwb/4
2T wvb 2 4
(8.124)
we find
Wy wb —iwb/4
A@(E)—am(4)e . (8.125)

8.6.2 Construction of an Orthonormal Wavelet Basis

The approximation ™+ (¢) contains more details than £ (). We would like to
extract these details by dividing the space

Vm+1 = Vm + Wm (8126)

into the sum of V,, and an orthogonal complement W,, L V,,. The approximation
F"*+D () then can be divide into the approximation £ plus the projection onto
W,., which provides the details. In the following we will construct an orthonormal
basis of W, in terms of wavelet functions ¥ (¢) which have the properties

() ¥ eV (8.127)
or
¥ => Cuuiin (8.128)
and
() ¥ LV, (8.129)
or
[e9]
/ () Ppn(1)dt =0 Vn (8.130)
—00

which is equivalent to

/OO U (W) Py (W)dw = 0 Vn. (8.131)

o0
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(a) (b) ()

@ 41 @, (1) @, {1
D(t)

o
o
o

Njo
o
o

o, (1

Fig.8.17 (Haar wavelet) The rectangular scaling function (a) can be written as a linear combination
of translated scaling functions at the next higher resolution (b). This is also the case for the wavelet
function (c) which is orthogonal to the scaling function

Example: Haar Wavelet

With the rectangular scaling function

lif0<x <1
D(t) = 0 else (8.132)
the Haar wavelet [88] (Fig.8.17)
1 1
()= —=P100) — —=P1,0() (8.133)

V2 V2

is a linear combination of the translated functions @; , and orthogonal to all @ ,.
The family of scaled and translated daughter wavelets

1 1
Vpn(t) = —=Ppu(t) — —=Pp 1)
s () ﬁ N ﬁ N +1(

obeys
Yn € Vir1 W L V. (8.134)

Orthogonality Condition

After Fourier transformation, (8.131) becomes

0= F*we "¢, (w)dw

G+D2m , .
= U (w)e A, o (w)dw

;%
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u . -
=2 / U (w  j82)e M By 2 dw
i J0
J

Qm . ~ ~
= / g w2/ S 2 (W + jR2) Po(w + j2,)dw
0 N
J

Qm . A
= / e 122 G (w)dw = 2, G (). (8.135)
0

This expression looks like the Fourier coefficient of an §2,,-periodic function with
the Fourier sum (7.5 with w and ¢ exchanged)

o0
L 2
Gw = > ¢"G,) withi, =n9—7T. (8.136)

n=—00 m

But, since G () = 0, we obtain the orthogonality condition

Z@*(w+j9m)q5m0(w+j9m) =0. (8.137)
J

Construction of the Wavelet

Now, ¥and @,,o both are in V,,, therefore (8.113)

Buo = Myo(w/2" )P (w/2" ) (8.138)
U = My (w/2" D (/2" (8.139)

whereM,, o and My are §2p—periodic.
Hence, from (8.137)

0= My ((+j2m)/2" ) Myo((w + j 2m) /2" DD (@ + jQm) /2" DI
-
=" M /2" 4 j20/2) Mo (w/2" T + j20/2)| B (w/2" T + j20/2)1
J

= D My@/2" ) Myo(w/2" 1 D)|B /2" + 20j/2)1

Jjeven

* m+1 20 m+1 20 3 m+1 ; 2

+ > My (w/2m 4+ =) Mo (/2" 4+ =2 ) 1@/ + 20j/2)]

jodd
= My, (/2" T Myo(w/2"H12) D7 (B (w/2" T + 20j/2)1

J even
+ M, (w/2m+1 + %) Mo (w/2m+1 + %) > 1b w2+ 20)/2)2
jodd
(8.140)
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From orthogonality of @, ,

- 1
@ /2" + jQ0)I* = o (8.141)
. 0
J

we see that both sums have the same value

= m+1 . 2 £ m+1 2 1
16 @/2" + /P = 18@/2" + k)P = (8.142)
. 0
jeven k
- - 1
@w/2" T+ 20j/2)P = |PW/2" kR + 20/2)1° = o
jodd k 0
(8.143)
and therefore
2 2
My @ /2" T Mo (w/2mT12) + My, w/2m T+ 70 Myo w/2"+1 4 70 =0
(8.144)
which can be satisfied by choosing [86]
m-+1 * m—+1 QO w2/ 2
My /2"y =M, w/2 + - e 1 (8.145)
which implies
m4+1 20 * m4+1 (WA 211/2)27/ 82
Mq/ w/2 +7 =Mm0(w/2 +Qo)e “ m+l m+l
= — M} (w/2m e/ 2 (8.146)
Hence we obtain the solution
7 w2/ 82, * m+1 20 = m+1
v, (w) =e M, w/2 +7 D(w/2"T)
h:’ in'm i+ 1D)w2m/2mi1 & m+1

which becomes in the time domain
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_ h:’ n' 1 iwt i+ 1D)W2T ) 2mt1 F m+1
Wm(t)_;m(—l) E/du}e e ®(w/2"th
= Z(—l)”’h,’;,\/zmﬂqb(zm“t + (' + 1)b)

= > (D" By Pyt w1 (1) (8.148)
=D (=D D). (8.149)

From the orthogonality condition (8.107) we obtain

- . 820
& w2+

2

2 2

- £2
2@+ =3 ‘Moo (w/z +G+ 1>7°)
J
- 820
@ (w/Z +2j 7)

é(m/Z-ﬁ-(Zj-&-l)%)

2

. 2
:Z‘MOO (w/2+(zj+1)7)

+> ‘Moo (w/2+ ©2j +2)%)

2 2

2
2 .
- ‘MOO (w/2 + 70) ‘ S Ibw/2+ j20)P

+ Moo (/DI D 1@ ((w + $20)/2 + j R0

= 2 (Intoo (w2 + 22
T\ 2

But, since the scaling function obeys the orthonormality condition (8.107),

i Q
@(W/Z-l—ji)

2

2
+ |Moo(w/2>2). (8.150)

1 2 2

- 2
@ Z |D(w+ jR)* = Z ‘Moo (W/2 + ]7)

=D IMoo(w/2+ jQ0)PI®w/2 + j20)I°

+Z‘Moo (w/z+ (j + %) 90) 2 @ (w/2+ (j + %) .QO)

= |Moo(w/2)* D 1D (w/2 + j20)I°
2
D 1P (W + 20)/2 + j20)

£20
+ ‘Moo (w/Z + 7)
2
:| (8.151)

hence the wavelet also fulfills the orthonormality condition

= Mo/ P + M PTILL
=2 [Moo(w/2)]” + oo(w/ +7)
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- ) ) 1
[Yo(w + jS20)|" = —. (8.152)
. £
J
Therefore the translated wavelet functions

Wy (1) = Wt —n27"b) = (=)™ 'n*, V212" (1 — n27"b) — n'b)

n'

= DT Pt apn () (8.153)

n

are orthonormal
U O ()dt = 6. (8.154)

Wavelets for different resolution m are orthogonal since they are by construction

in orthogonal spaces. The ¥,,,(¢) with m,n = —o0 ... 00 provide an orthonormal
basis of
o0
L*(R) = Wy. (8.155)
m=—0oQ

Alternatively, (8.155) is replaced by

o0
LE*R)y=Vo+ W, (8.156)

m=0

which is more useful for practical applications with limited total observation time.
According to (8.156), starting from a basic approximation in Vj, more and more
details are added to obtain approximations with increasing accuracy.

Example: Meyer Wavelet

Meyer introduced the first non trivial wavelet (Fig. 8.18) which, in contrast to the Haar
wavelet is differentiable [89, 90]. It was originally defined by its scaling function in
Fourier space!! (here, b = 1)
1 : 2m
Pw = —-cos 5 -1 ifF << (8.157)
0 ifjw] > %

from which the mother wavelet can be derived

There are different variants of the Meyer wavelet in the literature.
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0S T 7 T 7T 711 71— 0.5
S o4t 1 F Hoa E
o i | =
= =
£ 03F 1 r H03 2
Q Q
= 3 R =)
= =
S0z 1 F 402 2

o
<
Q 0.1 1 F 01 g
o L L P FRRTRRSTIN NFTTINN TTI NEY SFEI BRI
0 0
00 50 5 10-10 5 0 510

frequency ® frequency ®

Fig.8.18 (Meyer wavelet in frequency space) Left scaling function Right magnitude of the wavelet
function

0 else.
Explicit expressions in the time domain (Fig. 8.19) were given in 2015 [91]

2, 4 e
g‘f‘g ift =0

¢(t) = sin%t+%tcos “T"t else (8159)
mt— 18143
2 T T T T T T T T T T T T 2
oRELS 41 F {15 ©
5 | 1t | =
g I 1T 1"
S 05 4 F 405 £
B I | | | 2
00 -
£ ofF 1 r 10 3
5 | 1 I
Q
2 .05} 4 F 4-05 &
I | I I (T T ST N ] I I AT AT ITHN R NI 7_1

6 4 2 0 2 4 6 6 4 2 0 2 4 6
time t time t

Fig. 8.19 (Meyer wavelet in the time domain) Left scaling function Right wavelet function
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by =S eos T Lsin (-
1 16 1)3
(t—E—Et_E)
+%(¢_%cos (-1 +%3124Tﬂ(t > _ (8.160)
(=35 =% (-3

8.7 Discrete Data and Fast Wavelet Transform

Mallet’s algorithm [87] starts with function values

Jo = f(nAty) (8.161)

sampled at multiples of
Aty = 1/fs = bj2"mex, (8.162)

We do not really approximate the function but from the series of sample values we
construct the linear combination

Jn Pty () (8.163)

n

which is an element of

Miax—1

Ve = Vo + W (8.164)

m=0

and can therefore be represented as a coarse approximation in Vj and a series of
details with increasing resolution

Mmax—1

fn d)m”m,n (t) - Cn(pO,n (t) + dmn lIjmn (t) (8165)

n n m=0 n

8.7.1 Recursive Wavelet Transformation

The approximation coefficients ¢, and detail coefficients d,,, are determined recur-
sively which avoids the calculation of scalar products.
Starting with

Citpaen = [ (8.166)
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the details are extracted by expanding

Z ot Pty n (1) = Z e =10 Py =10 (1) + Z =10 Y —1,0 (1)
n n n

(8.167)

Due to orthogonality, the coefficients at the next lower resolution can be determined
from

_ _ *
Cilpax =10 = 2 et < Pty =10 | Prtyen >= E Cotpae i Pn o
n n
*
= E Cmm(,X,n+2n’hn (8.168)
n

n—1
=10 = E et < Pt =1.0 | Pt n >= E Cotpaen (=) oy —p—y

n n

(8.169)

which can be written as

* * : * n—1
dmmax—lﬂ' = : ,Cmma,nngn—Zn’ = z Crpax n+2n'9p with 9n = (=D hon-1.

n n

(8.170)

Iterating this recursion allows the calculation of the wavelet coefficients even with-
out explicit knowledge of the scaling and wavelet functions. Equations (8.168) and
(8.170) have the form of discrete digital filter functions with subsequent downsam-
pling by a factor of two (dropping samples with odd n’).!> This can be seen by
defining the down sampled coefficients

Cop =D el (8.171)
dy = cal=1)""hw (8.172)

and applying the z-transform to (8.168) and (8.170). For the approximation filter we
obtain

12For the more general class of bi-orthogonal wavelets, a different filter pair is used for reconstruc-
tion.
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fe(@ = hyCnpwz ™"

n'=—oon=—o0

= M T = h D =h @@ (8.173)

n n' n

hence in frequency space the signal is multiplied with the filter function

h(eio.)At) — hne—niwAr — \/EM()(UJ) (8.174)

n

Similar we obtain for the detail filter

fu@ = n(=D""hy_woz" = ez (=" hp . (8.175)

nn’

Since only even values of n’ are relevant, we may change the sign by (—1)" to obtain

Dt =D T 2 = 2 h(=2) e(2) = g7 () ¢(2) (8.176)
where
g(z) — (_l)nflhin_lzfn — (_1)7}172hzzn+1 =z h;i;(_z)n
n . n n
=z h,,(—z)_”) = zh*(—2). (8.177)

8.7.2 Example: Haar Wavelet
For the Haar wavelet with!?
h, = 0else (8.178)

gn = O else (8.179)

13The standard form of the Haar wavelet with go = 1/+/2, g1 = —1/+/2 differs from (8.179) by a
shift and time reversal. The resulting wavelet basis, however, is the same.
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Fig. 8.20 Haar filter pair 2

2

filter function If(w)!
T

0 L | L ~ol e L | L
-1 -0.5 0 0.5 1
frequency /o
we obtain the filter functions
h) = — (1+1) @)= (-2 (8.180)
Z) = —F—= - )= —F—=W&—232). .
J2 2) 7 V2
On the unit circle,
|h(e“?)|)? = 14 coswAr (8.181)
lg(e“?)|> = 1 — coswAt (8.182)

which describes a low and a high pass forming a so called quadrature mirror filter
pair (Fig. 8.20) [92].

8.7.3 Signal Reconstruction

The wavelet transformation can be inverted using the expansion

Zcm,n(pm,n(t) = Zcm—l,an—l,n(t) + zdm—l,n'pm—l,n(t) (8183)

n n

where the coefficients at the higher level of approximation are obtained from
Cm,n’ = zcmfl,n < d)m,n’|¢mfl,n > +de71,n < (pm,n/“pmfl,n >
n n
= Z Cmfl,nhn’72n + Z dmfl,n (_l)n _lhznfn’fl
n n

= ZCM71,nhn’72n + zdmfl,n(_l)n/_lhznfn’fl' (8184)
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This can be formulated as upsampling and subsequent filtering. Formally, we insert
zeros and define the up sampled coefficients

Cay = Cmetn oy =0 (8.185)
4} =dprn d),, =0. (8.186)
Then,
Cnthw—om = Qhyon = clhw_y (8.187)
et (D" = ()TN dd
=" Al =D (=) g (8.188)

n

where due to (8.186) the alternating sign can be omitted. Z-transformation then gives

Colwnz™ = CnZ A2 = h(2) ¢(2) (8.189)

n,n'

dngn/—n = Q(Z)d(Z) = Zh*(_Z) d(Z) (8190)

’

n,n’

8.7.4 Example: Analysis with Compactly Supported Wavelets

Wavelet analysis has become quite popular for processing of audio and image data.
In Problem 8.3 we use Daubechies wavelets [93] to analyze a complex audio signal
consisting of a mixture of short tones, sweeps and noise (Figs. 8.23, 8.24). Daubechies
satisfies (8.117) by taking

N

Myw/2) = = (1+e™?* Q@ ™? (8.191)

| =

with a trigonometric polynomial Q. This leads to a class of compactly supported
orthonormal wavelet bases, which for N = 1 include the Haar wavelet as the simplest
member. For N = 2,

2

. 1
Mow/2) = = (1 +e " 3 1443 + 1—+/3 e @2 (8.192)

N =
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=504+ B e )]
(8.193)
with the four nonzero scaling parameters
hy = %(1 +/3) A~ 0.48296 (8.194)
hy = “/?5(3 ++/3) & 0.83652 (8.195)
hy = “/?5(3 —V/3) ~0.22414 (8.196)
hs = %(1 —V/3) ~ —0.12941. (8.197)

This defines the wavelet basis which is known as Daubechies 2. There are no analytic
expressions for the scaling and wavelet functions available. They can be calculated
numerically from the infinite product (8.116) or a corresponding (infinitely) nested
convolution in real space. Figures8.21 and 8.22 show the fast convergence.

o
[

o
=

0.05 7

scaling function ®(t)

time t

Fig. 8.21 (Daubechies 2 scaling function) The scaling function is calculated numerically in the
time domain from the Fourier transform of (8.116) with a finite number of factors. The blue curve
shows the result for j,,.x = 7, red dots show results for j,.x =5, black dots for j,,, = 3. Delta
functions are replaced by rectangular functions of equal area
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wavelet function y(t)

time t

Fig. 8.22 (Daubechies 2 wavelet function) The wavelet function is calculated numerically in the
time domain from the Fourier transform of (8.116) and (8.147) with a finite number of factors.
The blue curve shows the result for j,,q.x = 7, red dots show results for j,,.x = 5, black dots for
Jmax = 3. Delta functions are replaced by rectangular functions of equal area

Problems

Problem 8.1 Short Time Fourier Transformation

In this computer experiment STFT analysis of a frequency modulated signal

F(6) =sin® (1) =sin wot + 221 — coswyr) (8.198)
Wi

with a momentaneous frequency of

0P
w(t) = e = wo(1 + asinw;t) (8.199)
is performed and shown as a spectrogram (Figs. 8.10, 8.11). Sampling frequency is
44100 Hz, number of samples 512.
You can vary the carrier frequency wy, modulation frequency w; and depth a as
well as the distance between the windows. Study time and frequency resolution

Problem 8.2 Wavelet Analysis of a Nonstationary Signal

In this computer experiment, a complex signal is analyzed with Morlet wavelets over
6 octaves (Fig. 8.14). The signal is sampled with a rate of 44 kHz. The parameter d of
the mother wavelet (8.61) determines frequency and time resolution. The frequency
wo of the mother wavelet is taken as the Nyquist frequency which is half the sampling
rate. The convolution with the daughter wavelets (8.76) is calculated at 400 times
with a step size of 0.726 ms (corresponding to 32 samples)
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t, =ty +nAt (8.200)
and for 300 different values of the scaling parameter
sm = 1.015™. (8.201)

The signal consists of two sweeps with linearly increasing frequency of the form
. 12 o
S12(t) = sin [w1,zt + — ! ] (8.202)

and another component which switches between a 5kHz oscillation and the sum of
a 300Hz and a 20kHz oscillation at a rate of 20Hz

sin(waokazt) + sin(wsgonz1)  if sin(waom ) <0

sin(wsgpt) else. (8.203)

) = [

Study time and frequency resolution as a function of d
Problem 8.3 Discrete Wavelet Transformation

In this computer experiment the discrete wavelet transformation is applied to a com-
plex audio signal. You can switch on and off different components like sweeps, dial
tones and noise. The wavelet coefficients and the reconstructed signals are shown.
(see Figs.8.23, 8.24).

wavelet coefficients

time (sec)

Fig. 8.23 (Wavelet coefficients of a complex audio signal) From Top to Bottom The black curve
shows the input signal. The finest details in light green, red and blue correspond to a high fre-
quency sweep from 5000-15000 Hz starting at 0.7 s plus some time dependent noise. Cyan, orange
and maroon represent a sequence of dial tones around 1000Hz, dark green and magenta show
the signature of several rectangular 100 Hz bursts with many harmonics. The black curve at the
Bottom shows the coefficients of the coarse approximation, which essentially describes random
low frequency fluctuations. The curves are vertically shifted relative to each other
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e e

reconstructed signal

0 0.5 1 1.5
time (sec)

Fig. 8.24 (Wavelet reconstruction) The different contributions to the signal are reconstructed from
the wavelet coefficients. Color code as in Fig. 8.23. The original signal (Top black curve) is exactly
the sum of the coarse approximation (Bottom black curve) and all details (colored curves). The
curves are vertically shifted relative to each other




Chapter 9
Random Numbers and Monte-Carlo

Methods

Many-body problems often involve the calculation of integrals of very high dimension
which can not be treated by standard methods. For the calculation of thermodynamic
averages Monte Carlo methods [94-97] are very useful which sample the integration
volume at randomly chosen points. In this chapter we discuss algorithms for the
generation of pseudo-random numbers with given probability distribution which are
essential for all Monte Carlo methods. We show how the efficiency of Monte Carlo
integration can be improved by sampling preferentially the important configurations.
Finally the famous Metropolis algorithm is applied to classical many-particle systems
and nonlinear optimization problems.

9.1 Some Basic Statistics

In the following we discuss some important concepts which are used to analyze
experimental data sets [98]. Repeated measurements of some observable usually
give slightly different results due to fluctuations of the observable in time and errors
of the measurement process. The distribution of the measured data is described by a
probability distribution, which in many cases approximates a simple mathematical
form like the Gaussian normal distribution. The moments of the probability density
give important information about the statistical properties, especially the mean and
the standard deviation of the distribution. If the errors of different measurements
are uncorrelated, the average value of a larger number of measurements is a good
approximation to the “exact” value.

9.1.1 Probability Density and Cumulative Probability
Distribution

Consider an observable &, which is measured in a real or a computer experiment.
Repeated measurements give a statistical distribution of values.

© Springer International Publishing AG 2017 187
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Fig. 9.1 (Cumulative A
probability distribution of

transition energies) The

figure shows schematically

the distribution of transition —

energies for an atom which E
has a discrete and a -
continuous part _A_
X
0 >
X

The cumulative probability distribution (Fig.9.1) is given by the function

F(x) = P{§ < x} 9.1)
and has the following properties:
e F(x) is monotonously increasing
o F(—00) =0, F(c0) =1
e F(x) can be discontinuous (if there are discrete values of &)
The probability to measure a value in the interval x; < £ < xp is

P <& =x) =F() — F(x). 9.2)
The height of a jump gives the probability of a discrete value

P(§ =x0) = F(xo +0) — F(xo — 0). 9.3)
In regions where F'(x) is continuous, the probability density can be defined as

/ .
fxo) = F'(xg) = lim —P(xg < & < xo + Ax). 9.4)
Ax—0 Ax

9.1.2 Histogram

From an experiment F'(x) cannot be determined directly. Instead a finite number N
of values x; are measured. By

Zn(x)
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Fig. 9.2 (Histogram) The 100 [
cumulative distribution of 80 | 1
100 Gaussian random = 60f 7
numbers is shown together N 40 ]
with a histogram with bin 20 ]

width Ax = 0.6 ol
8 02 *

A
0.1 *
0 7_!1_‘|\7 | | |

-3 -2 -1 0 1 2 3

we denote the number of measurements with x; < x. The cumulative probability
distribution is the limit

F(x) = lim %ZN(X). 9.5)

A histogram (Fig. 9.2) counts the number of measured values which are in the interval
Xi <X < Xi+1:

1
N(ZN(XH—I) —Zn(x) = F(xiy1) — F(x) = P(x; <& < xi41). 9.6)

Contrary to Zy (x) itself, the histogram depends on the choice of the intervals.

9.1.3 Expectation Values and Moments

The expectation value of the random variable £ is defined by

oo b
E[£] = / xdF(x) = lim / xdF (x) 9.7)

00 a——00,b—00

with the Riemann-Stieltjes-Integral [99]

b N
/a xdF (x) = Nlpm;xmxi)—F(x,-fl))u,:ﬁ%ai. 9.8)

Higher moments are defined as
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Elgf1 = / ” x*dF (x) 9.9)

o0

if these integrals exist. Most important are the expectation value
X = E[£] (9.10)

and the variance, which results from the first two moments

o’ =/oo(x—)_c)2dF = /xzdF+/x2dF—2x/xdF
= E[€*] — (E[£)*. (9.11)

The standard deviation ¢ is a measure of the width of the distribution. The expectation
value of a function (p(x) is defined by

Elp(x)] =/ P(X)dF (x). (9.12)

[ee]

For continuous F(x) we have with dF (x) = f(x)dx the ordinary integral

Elff1 = / ” X (x)dx (9.13)
Elp(x)] = / P)f (x)dx 9.14)

whereas for a pure step function F(x) (only discrete values x; are observed with
probabilities p(x;) = F(x; +0) — F(x; — 0))

El§ =2 xfp(x) 9.15)

E[p(®)] = D o(x)p(x). (9.16)

9.1.4 Example: Fair Die

When a six-sided fair die is rolled, each of its sides shows up with the same probability
of 1/6. The cumulative probability distribution F(x) is a pure step function (Fig.9.3)
and

o0

oy o 1 21
xz/_ xdF:;xi(F(x,-+0)—F(xi—0))=6;)@:?:3.5 9.17)
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Fig. 9.3 Cumulative 14
probability distribution of a 1
fair die
x |
w
0 L L -
0o 1 2 3 4 5 6 X
o 1 < 91
2 — 2 . _ - P 2 _ 7 e
2= xHF(x +0) - F(x; — 0)) = 6;;@. = = 15.1666 (9.18)

i=1

o=1x2 - =20. (9.19)

9.1.5 Normal Distribution

The Gaussian normal distribution is defined by the cumulative probability distribution

D (x) = \/Lz_w / e 24y (9.20)

and the probability density

1 —x2/2
2T
with the properties
oo
/ px)dx = @(c0) =1 (9.22)
—00
o0
X = / xpx)dx =0 (9.23)
. 00
ol =x= / X o(x)dx = 1. (9.24)
—0oQ0
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Since @(0) = 1 and with the definition

1~
Dy(x) = —— 24 9.25
W= = /0 P dr 9.25)

we have
D (x) = % + @y(x) (9.26)

which can be expressed in terms of the error function'

erf(x) = % /0 S ety — 200(v/2%) 9.27)
as
By (x) = %erf(%). (9.28)

A general Gaussian distribution with mean value X and standard deviation o has the
probability distribution

1 ' —x)?
o = - 9.29
Pro = — = OXp ( 752 9.29)

and the cumulative distribution

x—X S | (' —X)?
a>x,o(x>=a>( - )= /_ v~ mexp(_ o ) (9.30)

L P ot 931
_§(+er(0\/§)). (9.31)

9.1.6 Multivariate Distributions

Consider now two quantities which are measured simultaneously. £ and 7 are the
corresponding random variables. The cumulative distribution function is

F(x,y)=P(E <x and 7 <y). (9.32)

lerf(x) is an intrinsic function in FORTRAN or C.
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Expectation values are defined as

Elp(x,y)] = / / @(x, Y)d*F(x, y).

For continuous F(x, y) the probability density is

2

Ox0y

flx,y) =

and the expectation value is simply

E[w(x,y)]/ dX/ dyp(x, y)f (x,y).

The moments of the distribution are the expectation values
My = EI].

Most important are the averages
x=E[{] y=EInl

and the covariance matrix

( E[(¢ - %] E[(g—a‘c)m—y)]): X —F Xy-Xy
E[( -0 —»]  Eln—3)7] -xy -y )

The correlation coefficient is defined as

- %y

EAE)

If there is no correlation then p = 0 and F(x, y) = F|(x)F>(y).

9.1.7 Central Limit Theorem

193

(9.33)

(9.34)

(9.35)

(9.36)

(9.37)

(9.38)

(9.39)

Consider N independent random variables &; with the same cumulative distribution
function F (x), for which E[£] = 0 and E[£?] = 1. Define a new random variable

Sttty
UN——W

(9.40)
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Fig. 9.4 (Central limit 1 ‘ ‘
theorem) The cumulative | —
distribution function of 7
(9.42) is shown for N = 4 08 7
and compared to the normal 3
distribution (9.20) 2 06 4
E
<
S
g 04 s
02 -
0 /l: L | |
-2 0 2
n

with the cumulative distribution function F (x). In the limit N — oo this distribution
approaches (Fig.9.4) a cumulative normal distribution [100]

1 x 2
lim Fy(x) = @) = —= [ e "/dt. 9.41
Jim P = 0w =—— [ ©41)

9.1.8 Example: Binomial Distribution

Toss a coin N times giving & = 1 (heads) or §; = —1 (tails) with equal probability
P = 1.Then E[¢] = 0 and E[¢}] = 1. The distribution of

1 N
== 9.42

can be derived from the binomial distribution

1—[l+(—1)]N—2-N§:(—1)N—P( N ) (9.43)
=3 )| = 2 Nop .

where p counts the number of tosses with £ = +1. Since

n=p-1+4N—-p)-(-1)=2p—N € [-N,N] (9.44)
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the probability of finding n = ﬁ is given by the binomial coefficient

_2p—N N N
Pin=")=2 (N_p) (9.45)
or
P(rp%):z—’v(ﬂ). (9.46)
2

9.1.9 Average of Repeated Measurements

A quantity X is measured N times. The results X, --- Xy are independent ran-
dom numbers with the same distribution function f(X;). Their expectation value
is the exact value E[X;] = f dX; X;f(X;) = X and the standard deviation due to

measurement uncertainties is oy = ,/E [Xl.z] — X2. The new random variables
Xi—X

& = (9.47)
0x

have zero mean
ElX;] - X
El(]l=—=0 (9.48)
Ox

and unit standard deviation

X? + X? - 2XX; E[X?] —X?
of =E[§1—El§) =E [ > } = 5 =1. (9.49)
Ox Ox
Hence the quantity
N N
; X; — NX N —
n= lev'é = ZIW = £(X—X) (9.50)
Ox Ox
obeys a normal distribution
1 7 2/2
fn) =—=e""" 9.51)

V27
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From
R _ N _—
SXydX = f(mdn =f(77(X))::—X_dX (9.52)
we obtain
_ N 2
fX) = exp [——2(X - X) ] . (9.53)
Tox 20%

The average of N measurements obeys a Gaussian distribution around the exact
value X with a reduced standard deviation of
Ox

v = —. 9.54
=T (9.54)

9.2 Random Numbers

True random numbers of high quality can be generated using physical effects like
thermal noise in a diode or atmospheric noise [101]. Computers very often make
use of pseudo random numbers which have comparable statistical properties but
are not totally unpredictable. For cryptographic purposes sophisticated algorithms
are available which are slow but cryptographically secure, e.g. the Yarrow [102]
and Fortuna [103] algorithms. In computational physics, usually simpler methods
are sufficient which are not cryptographically secure, but pass important statistical
tests like Marsaglia’s DIEHARD collection [104, 105] and TestUO1 [106, 107].
Most methods use an iterated function (Sect.22.1). A set of numbers Z (e.g. 32-bit
integers) is mapped onto itself by an invertible function f(r) and, starting from a
random seed number ry € Z, the sequence

ripr = f(ri) (9.55)

is calculated to provide a series of pseudo random numbers [105]. Using 32-bit
integers there are 232 different numbers, hence the period cannot exceed 2°2. The
method can be improved by taking Z to be the set of m-tuples of 32-bit integers
r=1{z1,22 ...z} and f(r) a function that converts one m-tuple into another. An
m-tuple of successive function values defines the iteration

ri = {2 i1y -+ - Ziemt1) (9.56)

Firt = {2it15 2% -+ - Zimmi2} = U @is - Zimmt )5 Zio -+ - Zimmaa )} 9.57)
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Table 9.1 Addition modulo 2

0+0=0
1+0=1
0O+1=1
I1+1=0

Using 32-bit integers, (9.57) has a maximum period of 232" (Example: for m = 2
and generating 10° numbers per second the period is 584942 years). For the initial
seed, here m independent random numbers have to be provided.

The special case of a lagged RNG simply uses

Fivt = A{2it15 Zis -+ - Ziema2} = F @imma 1) Zis -+ Zimma2 ) (9.58)

Popular kinds of functions f(r) include linear congruent mappings, xorshift,
lagged Fibonacci, multiply with carry (MWC), complimentary multiply with carry
(CMWC) methods and combinations of these like the famous Mersenne Twister
[108] and KISS [105] algorithms. We discuss briefly some important principles.

9.2.1 Linear Congruent Mapping (LC)

A simple algorithm, mainly of historical importance due to some well known
problems [109], is the linear congruent mapping

Fiy1 = (ari + C) mod b (959)

with multiplier a and base b which is usually taken to be b = 232 for 32-bit integers
since this can be implemented most easily. The maximum period is given by b.

9.2.2 Xorshift

A 32-Bit integer’ can be viewed as a vector r = (b, b; . .. b3;) of elements b; in the
field 7, = {0, 1}. Addition of two such vectors (modulo 2) can be implemented with
the exclusive-or operation as can be seen from comparison with the table (Table9.1).

An invertible linear transformation of the vector r can be described by multipli-
cation with a nonsingular 32 x 32 matrix 7'

f@x)=rT. (9.60)

2This method can be easily extended to 64-Bit integers.
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Fig. 9.5 Multiply with carry t=ax, +C

mf:thod gsing 64-bit integer 63 0

withmete LLLLE TP ETELT
31 / 0 31 \ 0
INNIERENN NRNRENEER
Cppq=[t/2%] Xy, 1=t mod 232

To simplify the numerical calculation, Marsaglia [105] considers matrices of the
special form?

T=1+LY1+R)(1+LY (9.61)

where L (R) is a matrix that produces a left (right) shift by one. For properly chosen
numbers a, b, ¢ the matrix T is of order 232 — 1 and the random numbers have the
maximum possible period. There are many possible choices, one of them leads to
the sequence

y=yxor(y < 13)
y =yxor(y > 17)

y=yxor(y <5). (9.62)

9.2.3 Multiply with Carry (MWC)

This method is quite similar to the linear congruent mapping. However, instead of
the constant c in (9.59) a varying carry is used.

For base b = 23? and multiplier a = 698769069 consider pairs of integers r =
[x,c] with 0 <c<a, 0<x<b excluding [0,0]and [a —1,b— 1] and the
iteration function*

f(x, c]) = [ax + ¢ mod b, (ax + ¢)/b]. (9.63)
Starting with a random seed [xy, co] the sequence [xi, ci] = f([Xk—1, cx—1]) has

a period of about 260 1105]. If one calculates r = ax; + ¢, in 64 bits, then for
b = 2% ¢, 1is given by the top 32 bits and x; by the bottom 32 bits (Fig.9.5).

3 At least three factors are necessary for 32 and 64-Bit integers.
4Using integer arithmetics.
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9.2.4 Complementary Multiply with Carry (CMWC)

The simple MWC method has some inherent problems which can be overcome by a
slight modification. First, the base is taken to be b = 232 — 1 and second the iteration
is changed to use the (b — 1)-complement

xp = (b —1) — (axy_1 + cx—1) mod b. (9.64)

This method can provide random numbers which pass many tests and have very large
periods.

9.2.5 Random Numbers with Given Distribution

Assume we have a program that generates random numbers in the interval [0,1] like
in C:

rand() /(double)RAND_MAX .
The corresponding cumulative distribution function is
0 for x<0
Fox) =1x for 0<x<1. (9.65)
1 for x>1

Random numbers with cumulative distribution F(x) can be obtained as follows:

choose a RN r € [0, 1] with P(r < x) = Fyp(x)
leté =F~'(r)

F (x) increases monotonously and therefore
P <x) =P(F() <Fx) =P(r <Fx) = Fo(F(x)) (9.66)

but since 0 < F(x) < 1 we have

P(£ <x) = F(x). (9.67)

This method of course is applicable only if F~! can be expressed analytically.
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9.2.6 Examples

9.2.6.1 Fair Die

A six-sided fair die can be simulated as follows:

choose a random number » € [0, 1]

[ 1 for 0<r< é

: 2 for é <r< %

3 for 2<r<?

Let£=F—1(r>=i o :

4 for z<r<gz

4 5

: 5 for 3 <r< g

L6 for 2<r<1
9.2.6.2 Exponential Distribution
The cumulative distribution function

Fx)=1—e/? (9.68)

which corresponds to the exponential probability density

1
f&) = Xe‘)‘” (9.69)
can be inverted by solving
—x/A

r=1—e

(9.70)

for x:

choose a random number » € [0, 1]
Letx = F~'(r) = —=AIn(l — 7).

9.2.6.3 Random Points on the Unit Sphere
We consider the surface element
I, .
—R"dpsin 0d6. 9.71)
47

Our aim is to generate points on the unit sphere (¢, ) with the probability density
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1 . 1
[0, p)dpdd = —dysin0dd = ——dpd cos 0.
4 47

The corresponding cumulative distribution is

1 cos ) 1— 0
F(0,<p)=——/ dcosa/ dp=2 "7 _Fp.F,
4 1 0 2w

Since this factorizes, the two angles can be determined independently:

choose a first random number r; € [0, 1]
Let p = F;l(rl) =27,

choose a second random number r, € [0, 1]
Let§ = F, ' (r2) = arccos(l — 2ry)

9.2.6.4 Gaussian Distribution (Box Muller)

201

(9.72)

(9.73)

For a Gaussian distribution the inverse F~! has no simple analytical form. The
famous Box Muller method [110] is based on a 2-dimensional normal distribution

with probability density

K242
2

1
fx,y) = 5, &Xp [
v
which reads in polar coordinates

1
[, y)dxdy = f,(p, @)dpdgo%e*ﬂz/zpdpdsa.

Hence

1 )
Q) = e P /2
oo, ) 7P

and the cumulative distribution factorizes:

1 P ; —p? / 12 —p?
Fy(p, @) = g@-/o ple " Pdp = S (L=e™") = Fo(D)F,(p).

The inverse of F, is

p=+—In(1—-r)

(9.74)

9.75)

(9.76)

9.77)

(9.78)
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and the following algorithm generates Gaussian random numbers:

rl =RN €[0,1]
r2=RN €[0,1]

p=~—In(l —r)
p=27r
X = pcos .

9.3 Monte-Carlo Integration

Physical problems often involve high dimensional integrals (for instance path inte-
grals, thermodynamic averages) which cannot be evaluated by standard methods.
Here Monte Carlo methods can be very useful. Let us start with a very basic
example.

9.3.1 Numerical Calculation of «

The area of a unit circle (+ = 1) is given by 77 = 7. Hence 7 can be calculated by
numerical integration. We use the following algorithm:

choose N points randomly in the first quadrant, for instance N independent
pairs x, y € [0, 1]

Calculate 2 = x? +y?

Count the number of points within the circle, i.e. the number of points
Z@? < 1).

7 1s approximately given by @

The result converges rather slowly (Figs. 9.6, 9.7).

9.3.2 Calculation of an Integral

Let £ be a random variable in the interval [a, b] with the distribution

ﬁ for x € a, b]

0 else ©.79)

P(x<£§x+dx)=f(x)dx=[

The expectation value of a function g(x) is

00 b
Elgx)] = / gOf ()dx = / g(x)dx (9.80)

o0
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Fig. 9.6 Convergence of the 4
numerical integration
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hence the average of N randomly taken function values approximates the integral

b 1 N -
dx ~ — ) = . 9.81
/a g(x)dx NEQ(‘E) 9© (9.81)
To estimate the error we consider the new random variable
1
7= 290 (©.82)
i=1

Its average is

1 < b
7 =E[]= N ZE[Q(X)] = E[g(x)] = / g(x)dx (9.83)
i=1 a
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and the variance follows from

1 1
0% = El(y =D’ = El(5, D 9(&) = )’] = E[(N D @& =T (9.84)

E[Z(g(&) -9’1 = —(9(5)2 —9©) =~ (9.85)

The width of the distribution and hence the uncertainty falls off as 1/ +/N.

9.3.3 More General Random Numbers

Consider now random numbers & € [a, b] with arbitrary (but within [a, b] not
vanishing) probability density f(x). The integral is approximated by

g€ [ b g(x) b
Zf(fz [f(x)j| oy W= / g@)dx. (9.86)

The new random variable

9(&)
= 9.87
Zf(fl ©87)

according to (9.85) has a standard deviation given by

o = L (@) (9.88)

INTF©

which can be reduced by choosing f similar to g. Then preferentially £ are generated
in regions where the integrand is large (importance sampling).
9.3.4 Configuration Integrals

Consider a system which is described by a ndim dimensional configuration space
q1 - - - Gnaim Where a certain configuration has the normalized probability density

Q(CIL, .. Qndim) (989)

/ / 0(q1. - - - Guaim)dg"™ = 1. (9.90)
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The average of an observable A(q; . . . gnaim) has the form

<A>= / . / A(G1 - - - Guaim) 0(q1 s - - - Guaim)dg"™™ (9.91)

which will be calculated by MC integration.
Classical Thermodynamic Averages

Consider a classical N particle system with potential energy
V(qr---q3n)- (9.92)
The probability of a certain configuration is given by its normalized Boltzmann-factor

e BV(q1q)
f dq3Ne—ﬁV(ql .q3N)

o(q1...q3n) = (9.93)

and the thermal average of some observable quantity A(q; ... q3y) is given by the
configuration integral

<A>= /A(ch e Guaim)0(q1 - - q3n)AgN

_ S AN A - - guaim)e” V@)

f quNe*BV(ql - q3N) (9.94)
Variational Quantum Monte Carlo method
Consider a quantum mechanical N particle system with Hamiltonian
H=T+V(q:...q3n). (9.95)

According to Ritz’s variational principle, the ground state energy is a lower bound
to the energy expectation value of any trial wavefunction

< lptrial|H|l1,trial >
< lIltrial“’ptrial >

Ey = > E,. (9.96)

Energy and wavefunction of the ground state can be approximated by minimizing
the energy of the trial wavefunction, which is rewritten in the form
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S s HY (g - qay)dg?Y

Ev
S Whiar(qr - - q3n) Pdg?N

_Jolg1 - gsn)EL(qi - .- qan)dg?Y

(9.97)
Joqi ...qan)dg*N
with the probability density
0@+ q3) = Wi (g1 - g (9.98)
and the so called local energy
HY,i0(qy - ..
g, = 1% 1(q1 - - - g3n8) 9.99)

lIltrial(ql oo q3N) .

9.3.5 Simple Sampling

Let ¢ be a random variable which is equally distributed over the range gmin * * * ¢max»
i.e. a probability distribution

P € lq,q +dql) =f(qdq (9.100)
1
_ | g 4 € [Gmins Gmax]
fl@) = [ dmax—q 0 else (9.101)
/ f(@dg =1. (9.102)

Repeatedly choose ndim random numbers £, . .. £

+aim And calculate the expectation
value

1 M
E A Guaim) 061 - Guain) = Jim S AG" 60" )

m=1

= /A(fh e Gndim) 00q1 -+ - Guaim)f (@) - - - [ (Gnaim)Aq1 - - - dGuaim

Gmax

1 Gmax
= m /mi" - A(q1 - - - Gnaim) 0(q1 - - - Gnaim)dq

ndim
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Hence

E A - &naim) 015 - - - Endim))
E (01, - . - ndim))

Gmax

ndim

gumn qqn::x A(q1 - - Guaim) 0(q1 - - - Guaim)dq
9(41 v qndim)dqndim

N<A>. (9.103)

Gmax Gmax

Gmin Gmin

Each set of random numbers & .. . &4 defines one sample configuration. The
average over a large number M of samples gives an approximation to the average
< A >, if the range of the g; is sufficiently large. However, many of the samples will
have small weight and contribute only little.

9.3.6 Importance Sampling

Let us try to sample preferentially the most important configurations. Choose the
distribution function as

F(q1 - Guaim) = 0(q1 - . . Gndim)- (9.104)

The expectation value of A now directly approximates the configurational average
| M
: (m) (m)
EAE &) = lim — ZIA@{" -+ Endin)
m=

= / A(G1 - - - Quaim) 0(q1 - - - Guaim)dg" "™ =< A > . (9.105)

9.3.7 Metropolis Algorithm

The algorithm by Metropolis [111] can be used to select the necessary configurations.
Starting from an initial configuration qo = (q€0) e qg(l)\;) a chain of configurations is
generated. Each configuration depends only on its predecessor, hence the configura-
tions form a Markov chain.

The transition probabilities

are chosen to fulfill the condition of detailed balance (Fig.9.8)
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Fig. 9.8 Principle of o
detailed balance
[ J
I W
[ ] ing]
.
w e [ 28 b
ji J
[ J
°
Wij _ 0q) (9.107)
‘/Vjai Q(ql)

This is a sufficient condition that the configurations are generated with probabilities
given by their Boltzmann factors. This can be seen from consideration of an ensemble
of such Markov chains: Let N,(q;) denote the number of chains which are in the
configuration q; after n steps. The changes during the following step are

AN(q;) = Npt1(qi) — Nu(qi) = Z N, (q)Wisi — Ny (q) Wi (9.108)

qjeconf.
In equilibrium
Neq(qi) = Noo(qi) (9.109)
and the changes (9.108) vanish:

AN(a) = No D, 0(a) Wj—i — 0(@) Wi;

q;
o(q))
’ ; W S o g
=0. (9.110)
A solution of
AN(@) = D Nu(gq)Wjmi = Na(@)Winj =0 (9.111)
qjeconf.

corresponds to a zero eigenvalue of the system of equations

D N@)Wjmi = N(@) D Wisj = AN(q). (9.112)
qj q;
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One solution of this eigenvalue equation is given by

Neq(qj) — Q(qj)
Neq(qi) Q(qt) ’

(9.113)

However, there may be other solutions. For instance if not all configurations are
connected by possible transitions and some isolated configurations are occupied
initially.

Metropolis Algorithm

This famous algorithm consists of the following steps:
(a) choose a new configuration randomly (trial step) with probability

T(qt - qtr[al) = T(qtrial - (Iz)
(b) calculate

R = Q(erml)
o(qy)

(c)if R > 1 the trial step is accepted q;+1 = Qsrial
(d) if R < 1 the trial step is accepted only with probability R. choose a random
number ¢ € [0, 1] and the next configuration according to

A Qerial lf §<R
=1 q if ¢k

The transition probability is the product
Wi =TisjAis; (9.114)

of the probability 7;_,; to select i — j as a trial step and the probability A;_,; to accept
the trial step. Now we have

fOVR >1 — Aiﬁj =1, Aj%i =R!

Since T;_,; = T;j_,;, in both cases
Ne j Wi~>‘ Ai~>' j
o@) _ Winj _Ainj _ 5 0(4) 9.116)

Neg(@)  Wini  Aj o(q;)
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The size of the trial steps has to be adjusted to produce a reasonable acceptance
ratio of

Nacce (4
—accepred 1 1. 9.117)

N rejected

Multiple Walkers

To scan the relevant configurations more completely and reduce correlation between
the samples, usually a large number of “walkers” is used (e.g. several hundred) which,
starting from different initial conditions, represent independent Markov chains. This
also offers a simple possibility for parallelization.

Problems

Problem 9.1 Central Limit Theorem

This computer experiment draws a histogram for the random variable 7, which is
calculated from N random numbers &; - - - €y

N
il

The &; are random numbers with zero mean and unit variance and can be chosen as

(9.118)

e & = %1 (coin tossing)
e Gaussian random numbers

Investigate how a Gaussian distribution is approached for large N.
Problem 9.2 Nonlinear Optimization

MC methods can be used for nonlinear optimization (Traveling salesman problem,
structure optimization etc.) [112]. Consider an energy function depending on many
coordinates

E(q1,q2--qn). (9.119)

Introduce a fictitious temperature 7" and generate configurations with probabilities
1
P(gi---qn) = ze_E(‘Il""IN)/T' (9.120)

Slow cooling drives the system into a local minimum. By repeated heating and
cooling other local minima can be reached (simulated annealing)
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In this computer experiment we try to find the shortest path which visits each of
N up to 50 given points. The fictitious Boltzmann factor for a path with total length
Lis

P(L) =e 1T, (9.121)
Starting from an initial path S = (i}, iz, - - - iy) n < 5 and p are chosen randomly and
anew path S = (i1, - - - ip—1, Ip4ns - - Ips ip+nt1, - - - iy) is generated by reverting the
sub-path

Ip e lpgn = bpgn - ip.

Start at high temperature 7 > L and cool down slowly.



Chapter 10
Eigenvalue Problems

Eigenvalue problems are omnipresent in physics. Important examples are the time
independent Schrodinger equation in a finite orthogonal basis (Chap. 10)

M
> < ¢lHIg > C; = ECy (10.1)
j=1

or the harmonic motion of a molecule around its equilibrium structure (Sect. 15.4.1)
Pmie—en =3 LY (e e (10.2)
i\Qi i - afzafj ] j 7 '

Most important are ordinary eigenvalue problems,' which involve the solution of
a homogeneous system of linear equations

N
> apx =My (10.3)
j=1

with a Hermitian (or symmetric, if real) matrix [113]

ajp = (17; (104)
The couple (N, x) consisting of an eigenvector x and the corresponding eigenvalue
A is called an eigenpair.

"We do not consider general eigenvalue problems here.
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Matrices of small dimension can be diagonalized directly by determining the
roots of the characteristic polynomial and solving a homogeneous system of linear
equations. The Jacobi method uses successive rotations to diagonalize a matrix with
a unitary transformation. A very popular method for not too large symmetric matrices
reduces the matrix to tridiagonal form which can be diagonalized efficiently with the
QL algorithm. Some special tridiagonal matrices can be diagonalized analytically.
Special algorithms are available for matrices of very large dimension, for instance
the famous Lanczos method.

10.1 Direct Solution

For matrices of very small dimension (2, 3) the determinant
det |a; — A6y =0 (10.5)

can be written explicitly as a polynomial of A. The roots of this polynomial are the
eigenvalues. The eigenvectors are given by the system of equations

J

10.2 Jacobi Method

Any symmetric 2 x 2 matrix

ap a
A= (9 @2 (10.7)
app ax
can be diagonalized by a rotation of the coordinate system. Rotation by the angle ¢
corresponds to an orthogonal transformation with the rotation matrix

R, = (cosga—smga)' (10.8)

siny cosy
In the following we use the abbreviations

c=cosp, s=sinp, t=tanyp (10.9)
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The transformed matrix is

rap-l — (€~ a ap c s
s C dip dx —S5cC
_ ( c*ay +sPan — 2csay  cs(an — axn) + (¢ — 52)a12)

es(ayy — an) + (2 — sDay  s2ay + Cax + 2csap (10.10)

It is diagonal if

0 = cs(ay — an) + (2 — Pap, = % Sin(2p) + ann cos2p)  (10.11)
or
2ayp
tan(2p) = —2 (10.12)
ay —dajy

Calculation of ¢ is not necessary since only its cosine and sine appear in (10.10).
From [113]

1 —¢ cr—s? ax — ayy
t 2cs cot(2¢) 2a12 ( )

we see that ¢ is a root of

e d L P (10.14)
ap
hence
axn — ai ayn —an '\’ 1
t=—"—+ l—I—( ) = . (10.15)
2ay; 2ayn ey 4 ] 4 (022_0“)2
2a; 2a1

For reasons of convergence [113] the solution with smaller magnitude is chosen
which can be written as

1 dxp—dajg
sign ( 21 )

2.
ax—dajl axp—daiy
‘ 2012 ‘+ V 1 +( 2012 )

=

(10.16)
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Again for reasons of convergence the smaller solution ¢ is preferred and therefore
we take

1 t
c= s = . (10.17)
V1412 V1412

The diagonal elements of the transformed matrix are

ap = 62a11 + s2a22 — 2csayn (10.18)

Gy = s2ay| + ctarn + 2csays. (10.19)
The trace of the matrix is invariant

an +an =an +an (10.20)
whereas the difference of the diagonal elements is

1—17 t

i — axn = (& — s (an — an) — desar, = H—tz(all —axp) — 4%

= Va0 TH gt ) -2

= —ax apn " 112 1+ 2 = —dax ap

(10.21)

and the transformed matrix has the simple form

app — apt
. 10.22
( axn + alzt) ( )

For larger dimension N > 2 the Jacobi method uses the following algorithm:
(1) look for the dominant non-diagonal element max . |a;|

(2) Perform a rotation in the (ij)-plane to cancel the element a;; of the transformed
matrix A = R® . A . R~!_ The corresponding rotation matrix has the form

R — , (10.23)

(3) repeat (1-2) until convergence (if possible).
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The sequence of Jacobi rotations gives the over all transformation

Al
RAR™! = ~~-R2R1AR171R271"‘: L (10.24)
AN
Hence
Al
AR =R™! (10.25)
AN

and the column vectors of R~' = (v|, v5 - - - vy) are the eigenvectors of A:

AV, V2o V) = (A1V1, AV, - - Aw V) . (10.26)

10.3 Tridiagonal Matrices

A tridiagonal matrix has nonzero elements only in the main diagonal and the first
diagonal above and below. Many algorithms simplify significantly when applied to
tridiagonal matrices.

10.3.1 Characteristic Polynomial of a Tridiagonal Matrix

The characteristic polynomial of a tridiagonal matrix

‘an -\ ap

Piy = det! 2T

‘ . an—in

l
I (10.27)
ANN—1 ANN — )\‘

can be calculated recursively:
Py=1

Pi(N) =ap — A

Py(N) = (azp — NP1 (N) — apan

Py(N) = (any — MPy—1(N) — ay v—1an—1.nPn—2(N). (10.28)
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10.3.2 Special Tridiagonal Matrices

Certain classes of tridiagonal matrices can be diagonalized exactly [114-116].

10.3.2.1 Discretized Second Derivatives

Discretization of a second derivative involves, under Dirichlet boundary conditions
f(xo0) = f(xny1) = 0, the differentiation matrix (Sect.20.2)

-2 1
1 =21
M= N (10.29)
1 =21
1 -2
Its eigenvectors have the form
bil sin k
f=1/fi|=| sinmk) |. (10.30)
v sin(Nk)

This can be seen by inserting (10.30) into the n-th line of the eigenvalue (10.31)

Mf =X (10.31)

(Mf),, = (sin ((n — 1)k) + sin ((n 4+ 1)k) — 2 sin(nk))
= 2sin(nk) (cos(k) — 1) = A (f), (10.32)

with the eigenvalue
.o [k
A=2(cosk —1) = —4sin 5) (10.33)

The first line of the eigenvalue (10.31) reads

(Mf); = (=2sin(k) + sin(2k))
= 2sin(k)(cos(k) — 1) = (), (10.34)
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and from the last line we have

(Mf)y = (—=2sin(Nk) + sin([N — 11k))
= \(f)y = 2(cos(k) — 1) sin(Nk)

which holds if
sin((N — 1)k) = 2 sin(Nk) cos(k).

This simplifies to

219

(10.35)

(10.36)

sin(Nk) cos(k) — cos(Nk) sin(k) = 2 sin(Nk) cos(k)

sin(Nk) cos(k) + cos(Nk) sin(k) =0
sin((N + 1)k) = 0.
Hence the possible values of k are

™

k =
(N+1)

Iwithl=1,2,---N
and the eigenvectors are explicitly (Fig. 10.1)

[

f=1 sin(NLHln) 1.

L)

(10.37)

(10.38)

(10.39)

For Neumann boundary conditions g{ (x) = %’; (xy) = 0 the matrix is slightly

different (Sect.20.2)

Fig. 10.1 (Lowest
eigenvector) Top for fixed
boundaries f,, = sin(nk)
which is zero at the

additional points xq, Xy 1.
Bottom for open boundaries

Xy Xz XN-1 XN XNyt X

fu = cos((n — 1)k) with

horizontal tangent at xj, xy

due to the boundary

conditions PY

S =fo.fn-1 =fv+1 Xo

Xy X XN-1 XN XNy X
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22
1 -2 1
. (10.40)
1 -2 1
2 -2

Its eigenvalues are also given by the expression (10.33). To obtain the eigenvectors,
we try a more general ansatz with a phase shift

sin @,
f= sin(® +:(n - Dh) |. (10.41)
sin(®; + :(N — 1k)
Obviously

sin(®) + (n — Dk — k) +sin(®; + (n — Dk + k) — 2sin(P; + (n — 1)k)
=2 (cosk — 1) sin(@; + (n — D)k). (10.42)

The first and last lines of the eigenvalue equation give

0 = —2sin(®P;) + 2sin(P; + k) — 2(cosk — 1) sin(Py)
=2cos ®sink (10.43)

and

0= —2sin(®; + (N — k) + 2sin(P; + (N — D)k — k)
— 2(cosk — 1) sin(@; + (N — k) = 2cos(®; + (N — Dk)sink  (10.44)

which is solved by

T k=—"—1 1=12...N (10.45)
2 N-1

D) =

hence finally the eigenvector is (Fig. 10.1)

1

f= cos(j’\ijllwl) . (10.46)

(— 1)
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Even simpler is the case of the corresponding cyclic tridiagonal matrix
-2 1 1
1 =21
=1 I (10.47)
1 -2 1
\ 1 1 -2
which has eigenvectors

()

f=1e" | (10.48)

)

and eigenvalues
—ik ik o (k
A=-"2+4+e " 4+e" =2(cos(k) — 1) = —4sin 3 (10.49)

where the possible £ — values again follow from the first and last line

—0eik 4 2k | iV _ (_2 +e ik 4 eik) ik (10.50)
eik 4 ei(N*l)k _ zeiNk — (_2 4 efik 4 eik) eiNk (1051)
which both lead to
elVk — 1 (10.52)
2
k:ﬁﬂl, [=0,1,---N—1. (10.53)

10.3.2.2 Discretized First Derivatives

Using symmetric differences to discretize a first derivative in one dimension leads
to the matrix?

2This matrix is skew symmetric, hence iT is Hermitian and has real eigenvalues i\.
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D= R : (10.54)

The characteristic polynomial of the Hermitian matrix iD is given by the recursion
Sect. 10.3.1

Po=1
P =-\
Py =—APy_| — Py_» (10.55)

which after the substitution x = —\/2 is exactly the recursion for the Chebyshev
polynomial of the second kind Uy (x). Hence the eigenvalues of D are given by the
roots x; of Uy (x) as

km
Ap = 2ix; = 2i k=1,2...N. 10.56
D 1 ICOS(N—i—l) ( )

The eigenvalues of the corresponding cyclic tridiagonal matrix
D= - ‘ a . (10.57)

are easy to find. Inserting the ansatz for the eigenvector

expik
: (10.58)
expiNk
we find the eigenvalues
ei(m+l)k _ ei(mfl)k — Aeimk (1059)

\ = 2isink (10.60)
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and from the first and last equation

1 =eM (10.61)

el = el (VHDE (10.62)
the possible k-values

2
k=1 1=0,1,...N—1. (10.63)
N

10.4 Reduction to a Tridiagonal Matrix

Eigenproblem algorithms work especially efficient if the matrix is first transformed
to tridiagonal form (for real symmetric matrices, upper Hessian form for real non-
symmetric matrices) which can be achieved by a series of Householder transforma-
tions (5.56)

T
uu
A" = PAP with P=PT =1-2"—

i (10.64)

The following orthogonal transformation P; brings the first row and column to tridi-
agonal form. We divide the matrix A according to

A= (a“ af ) (10.65)

o Ay

with the (N — 1)- dimensional vector

ap
o= :
aln
Now let
0
{a (:-)\\l 0 1
. :( )+/\e<z> with ¢® = 1 0 (10.66)

o ) ;)
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Then
lul* = |al* + \* + 2\an

and

T{any\ _ 2
u (a)_lal +)\a12.

10 Eigenvalue Problems

The first row of A is transformed by multiplication with P, according to

n(w)=(%)-

lo> + Aain 0 )
2 Ae@ |,
o+ 2+ 20an |\a) T2

The elements number 3 . .. N are eliminated if we choose?

A = x|
because then

o +ap

lof* £ |rlarn

la2 + A2 4+ 2 a;p

and

Finally we have

2
ar aiz) 0

@ 2 (2

Qyp Ay Aoz«

AP =PAP =] 0 4 "

2 2
0 ayy azy -+

as desired.

|l +al? £ 2lalan

2
aon

2
asy
2
anN

3To avoid numerical extinction we choose the sign to be that of ay».

(10.67)

(10.68)

(10.69)

(10.70)

(10.71)

(10.72)

(10.73)
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For the next step we choose

(2)

ax 0

a=]| |, u={|0])£ae?® (10.74)
(2) «
arn

to eliminate the elements ayy . . . azy. Note that P, does not change the first row and
column of A®) and therefore

/6111 a(122) 0 «ovn-. 0 \l
2 2 3

e
_ I O a23 a33 ...... a3N

1 ¢ 0 o

Lo o)

After N — 1 transformations finally a tridiagonal matrix is obtained.

A® = Pp,A®Pp, (10.75)

10.5 The Power Iteration Method

A real symmetric N x N matrix with (orthonormal) eigenvectors and eigenvalues®
Aui = /\,-ui (1076)
can be expanded as

A= udul. (10.77)

The sequence of powers

A" = Zu,-/\;’uf (10.78)

converges to

uT

n
max- max

n
A" — umaxA

4We do not consider degenerate eigenvalues explicitly here.
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where’
[ Amax] = max. (10.79)

Hence for any initial vector v; (which is arbitrary but not perpendicular to u,,,,) the
sequence

Vni1 = A, (10.80)

converges to a multiple of u,,,,. To obtain all eigenvectors simultaneously, we could
use a set of independent start vectors, e.g. the N unit vectors and iterate simultaneously
for all of them

1
@ oMy =(er, e = . (10.81)
1
W, o)y =AY = A (10.82)

Most probably, all column vectors of A then converge to multiples of the same
eigenvector. To assure linear independence, an orthogonalization step has to follow
each iteration. This can be done (QOR decomposition, Sect.5.2) by decomposing the
matrix into the product of an upper triangular® matrix R and an orthogonal matrix
Q" = Q7! (Sect.5.2)

A = OR. (10.83)

For symmetric tridiagonal matrices this factorization can be efficiently realized by
multiplication with a sequence of Givens rotation matrices which eliminate the off-
diagonal elements in the lower part one by one’

0= RN-LN)  p23)p.2) (10.84)

QN—1 ° (6% aq
beginning with

c s apy agn
—scC ajp ax ans
RU2 4 — 1

[e3]
aN-—2N-1 AN—-1,N—1 AN—1,N
1 aN—-1,N 4NN

SFor simplicity we do not consider eigenvalues which are different but have the same absolute value.
The equivalent QL method uses a lower triangular matrix.
7This is quite different from the Jacobi method since it is not an orthogonal transformation.
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cayy +sapy capp + saxy sar
0 —sap + cay cay
= asq asy  azy (10.85)
k AaN-1,N 4NN }
where the rotation angle «; has to be chosen such that
s apn
tano = - = —. (10.86)
¢ an

Finally, this leads to a method known as orthogonal simultaneous power iteration

wh =4 =0WRD (10.87)
W(n+l) — AQ(") (1088)
QDR — yy kD), (10.89)

This method calculates a sequence of orthogonal matrices Q" which converge to a
set of independent eigenvectors. Moreover, from (10.88) and (10.89)

A= W(thl)Q(n)T — Q(n+1)R(n+1)Q(n)T (1090)
and therefore powers of A are given by

A" = (QMRMQUITY (QU-DRU-DQUAT) | (0P R QI (QVRD)
— Q(n)R(n)R("*l) . RMD. (10.91)

The product of two upper triangular matrices is upper triangular again which can be
seen from

R™WRM)ip = > R"RY =0if i > k. (10.92)

Jrisj=k
Therefore the QR decomposition of A” is

A" = gmWR"

(10.93)
with

R™ = g™ RO, (10.94)
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To obtain other than the dominant eigenvalues, the inverse power iteration method
with shift is useful. Consider the matrix

A=A—-0)"! (10.95)

where 1 is not an eigenvalue A\;of A. Obviously it has the same eigenvectors as A
and eigenvalues given by

Au; = Nu; = u;. (10.96)
/\,‘ — 0

Hence, if o is close to )\;, the power iteration method will converge to a multiple of u;.
For practical calculations, an equivalent formulation of the power iteration method
is used which is known as the QR (or QL) method.

10.6 The QR Algorithm

The QR algorithm [117] is an iterative algorithm. It uses a series of orthogonal trans-
formations which conserve the eigenvalues. Starting from the decomposition of A

A= QR (10.97)

A> = R0 = 0[AQ; (10.98)
we iterate

App1 = R, 0, = OFA,0,. (10.100)

From (10.99) and (10.100)

Qn+1Rn+1 =R, Qn

and the n-th power of A is

A"=AA.. . A=Q1RIQIR; ... Q1R = Q1(Q2R: ... O2R))R,
= 0102(Q3R; ... O3R)RR; - = Q,R, (10.101)

0,=01...0y Ri=R,...R. (10.102)
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But since QR decomposition is unique, comparison of (10.93) and (10.101) shows
0,=0" R,=R" (10.103)

i.e. the column vectors of Q, converge to a set of eigenvectors and the transformed
matrix

—T7 —
Anr1 = A0y = 0,04 An1051Qn = - - = 0,AQ, (10.104)
converges to a diagonal matrix. Now consider the inverse power
A" =R,'0. (10.105)

The inverse of a symmetric matrix is also symmetric and
s I\T
AT =0, (Rn ) (10.106)

shows, that the QR algorithm uses the same orthogonal transformations as ordinary
and also inverse power iteration. The inverse of an upper triangular matrix is also
upper triangular but the transpose is lower triangular. Therefore we modify (10.106)
by multiplying with a permutation matrix

1
p=|( . Pr=1 (10.107)
1

from the right side, which reverses the order of the columns and
_ — \T -~
A~"P = Q,PP (Rn ) P=0R (10.108)
is the QR decomposition of A™"P. This shows the close relationship between the QR
algorithm® and the inverse power iteration method.

To improve convergence, a shift o is introduced and the QR factorization applied
to A,, — 0. The modified iteration then reads

A, — 0 = OuR, (10.109)

Ayt = ROy +0 =05 (A, — 0)0s + 0 = 01 A0, (10.110)

80r the equivalent QL algorithm.
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Symmetry and tridiagonal form are conserved by this algorithm. The simplest
choice for the shift is to take a diagonal element o,, = a,,,, = (A,))m.m cOrresponding
to the Rayleigh quotient method. An even more robust and very popular choice [113]
is Wilkinson’s shift

T = o + & — sign(8),/62 + @, 5= M (10.111)

Am—1,m—1 Am—1,m

which is that eigenvalue of the matrix ( ) which is closer to a, ,.

Am—1,m Am,m
The calculation starts with oy and iterates until the off-diagonal element ay_; x
becomes sufficiently small.” Then the transformed matrix has the form

ap ap
ajp ax
. 10.112
aN—-2,N-1 ( )
an—aN—1 an-1N—1 O
0 anNN

Now the last column and row can be discarded (deflation method) and the next
iteration performed with the shift o,y_; on a tridiagonal matrix of dimension N — 1.
This procedure has to be repeated N times to obtain all eigenvalues. Convergence is
usually cubic (or at least quadratic if there are degenerate eigenvalues).

10.7 Hermitian Matrices

In quantum mechanics often Hermitian matrices have to be diagonalized (which
have real valued eigenvalues). To avoid complex arithmetics, an Hermitian eigen-
problem can be replaced by a symmetric real valued problem of double dimension
by introducing

B=%A) C=3J@A) x=u+1iv (10.113)

where, for Hermitian A

A=B+iC=A" =B" —icT (10.114)
hence
B=B" c=-CT (10.115)

°For the QL method, it is numerically more efficient to start at the upper left corner of the matrix.
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and the eigenvalue problem can be rewritten as
0=(Ax— )= Bu—Cv—Au)+i(Bv+ Cu — \v) (10.116)

or finally in the real symmetric form

(%) ()= () o

Each eigenvalue of the N-dimensional Hermitian problem corresponds to two eigen-
vectors of the 2N-dimensional problem since for any solution of (10.117)

B —-C —v —Bv — Cu —v
(&%) () =-Cam) () 10115
provides a different solution, while the complex vectors u + iv and i(u + iv) =
—v + iu only differ by a phase factor.

10.8 Large Matrices

Many problems in computational physics involve very large matrices, for which
standard methods are not applicable. It might be even difficult or impossible to keep
the full matrix in memory. Here methods are used which only involve the product of
the matrix with a vector which can be computed on the fly. Krylov methods are very
similar to power iteration but diagonalize only the projection of the matrix onto a
Krylov space of much smaller dimension n << N which is constructed by multiplying
a normalized start vector g, repeatedly with A

K. (A, q,) = span{q,,Aq,,A%q,, ... A" 'q,)}. (10.119)
We use the Arnoldi method (Sect. 5.6.5) to construct an orthonormalized basis of this

space. For a symmetric matrix this simplifies to a three-term recursion also known
as symmetric Lanczos algorithm [118]. Applying the Arnoldi method

hin=(q/Aq,) j<n (10.120)
Gust =Ad, — D g (10.121)
j=1
— |7 _ qn+1
hnsin = qps1l Guir = (10.122)

thrl.,n
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to a symmetric matrix A, we find

ey, =aiA%q, — 2> (41Aq) (g Ag,) + D (q] Aq,)(q)Aq,) 5y
J i’

= @A | hugin@uir + D indy | = Dy = Buginhnni (10.123)
j J

J

hence

hn+l,n = hn,n-H- (10124)

Furthermore,

1 n—1
hn—2.0 = @y_2Aqy = qu2Ah 1 |:Aqnl = hjn1g;
n,n— .
, =

hn.nfl o
Jj=1

1 n—2 n=2
= - Zhjnflhj,n72 - hnfl,nflhnflnfl + qr{— lA htl*l.n—an—l + Z hjn72qj
J=1

1 n—2 n—2
= p | |:_ zhjn—lhj,n—z - hn—l,n—lhn—Z,n—l + hn—l,n—lhn—l.n—Z + zhjn—lhjn—Z =0
e j=1 J=1

(10.125)

and similar for s > 2

1 n—1
hn—:,n = qZ—sAq)z = qr{—sAh : |:Aqnl - 2 h/'nlq/'i|
n.n— .
. =

1 ) n—s
= h ) - Zhjnflhj,nfx - hnfl,nflhnfs,nfl + q,{,lA hn7s+l,nfsqn7;+1 + z hjnfsqj
n.n— = =1
1 [ 02 n—s
= A ) - zhjn—lhj,n—x - hn—l,n—lhn—s,n—l + hn—x+1,n—xhn—1.n—s+l + Z hjn—lhjn—s
n.n— = Jj=1
1 B n—2
= A - Z hj<n—lhj‘n—s - hn—].n—] hn—.\m—l + hz1—x.n—s+] hn—.&+] n—1 (]O 1 26)
nn—1 L Jj=n—s+l
1 n—=2
hnfs,n - l’l_ - Z hj,nflhj,nfx - hnfl,nflhnfs,nfl . (10127)
nn—1 Jj=n—s+2

Starting from (10.125) for s = 2 we increment s repeatedly and find

nsn = hysn=...hn=0 (10.128)
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since (10.127) only involves smaller values of s, for which (10.128) already has been
shown. The Arnoldi decomposition produces an upper Hessenberg matrix Sect. 5.6.5,

U,=(q,....q,) (10.129)

H,

AUn = Un+1H = (Una qn+1) (h " eT

) = U,H, + hy11q,4€) (10.130)

which for symmetric A becomes tridiagonal

hiy hia .. hyy, ar by
hat hy ... hoy by ay by
e .
H = o . _ RS _ .
[ 32 L by sy by i} (bne,f) ( )

\ L } b\ a
hn+1,n bn

with a symmetric tridiagonal matrix 7', which is the desired projection of A into the
Krylov space K,

UZAUn = UnTUnJrlH = UnT (Un, q,,+1) (b”];T)

- (En,0>( T )=T. (10.132)

T
bye,

For an eigenpair (A, v) of T

T
AWU,v) = Uy Hy = (Una qn+1) (b eT) v

= (U,T + bug,y1€)) v = ANUv) + bug,, . €} v. (10.133)

Hence, an approximate eigenpair of A is given by the Ritz pair (A, U, v) and the error
can be estimated from the residual norm

(A = ) Unv|

= |bulle, v|. (10.134)
| | n
v

Due to numerical errors, orthogonality of the Lanczos vectors ¢, can get lost and
reorthogonalization is necessary [119, 120]. If this takes to much time or if memory
limits do not allow to store enough Lanczos vectors, the procedure has to be restarted
with a new initial vector which is usually taken as a linear combination of selected
eigenvectors which have already been found [121, 122]. Furthermore, special care
has to be taken to determine possible degeneracies of the eigenvalues.
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10.9 Non-symmetric Matrices

Eigenvalue problems with non-symmetric matrices are more complicated. Left and
right eigenvectors have to be distinguished and the eigenvalues can be complex valued
even if the matrix is real. The QR method [117] is applicable also to a non-symmetric
matrix but very expensive unless the matrix is first brought to upper triangular (instead
of tridiagonal) form, which can be achieved by a series of similarity transformations
with Householder reflections (5.2.2). The implicit QR method with double shift
avoids complex arithmetics by treating pairs of complex conjugated eigenvalues
simultaneously. For very large matrices the Arnoldi method brings a non-symmetric
matrix to upper Hessenberg form, which provides the projection onto the Krylov
space as an upper triangular matrix.

Problems

Problem 10.1 Computer Experiment: Disorder in a Tight-Binding Model

We consider a two-dimensional lattice of interacting particles. Pairs of nearest neigh-
bors have an interaction V and the diagonal energies are chosen from a Gaussian
distribution

1 2 2
P(E) = ———¢ E/24° 10.135
(E) yWor ( )

The wave function of the system is given by a linear combination

b= Cyy (10.136)
ij

where on each particle (i, j) one basis function v;; is located. The nonzero elements
of the interaction matrix are given by
H(ijlij) = Ej (10.137)
H@jli£1,j) =HGli,j£1)=V. (10.138)
The Matrix H is numerically diagonalized and the amplitudes C; of the lowest

state are shown as circles located at the grid points. As a measure of the degree of
localization the quantity

> eyl (10.139)
ij

is evaluated. Explore the influence of coupling V and disorder A.



Chapter 11
Data Fitting

Often a set of data points has to be fitted by a continuous function, either to obtain
approximate function values in between the data points or to describe a functional
relationship between two or more variables by a smooth curve, i.e. to fit a certain
model to the data. If uncertainties of the data are negligibly small, an exact fit is
possible, for instance with polynomials, spline functions or trigonometric functions
(Chap. 2). If the uncertainties are considerable, a curve has to be constructed that
fits the data points approximately. Consider a two-dimensional data set

(i, y) i=1...m (11.1)
and a model function
fCar...ay) m=n (11.2)

which depends on the variable x and n < m additional parameters a;. The errors of
the fitting procedure are given by the residuals

ri=yi—f(xi,ar...an). (11.3)

The parameters a; have to be determined such, that the overall error is minimized,
which in most practical cases is measured by the mean square difference’

1 m
Saalar ...a,) = EZr,?. (11.4)
i=1

The optimal parameters are determined by solving the system of normal equations.
If the model function depends linearly on the parameters, orthogonalization offers a
numerically more stable method. The dimensionality of a data matrix can be reduced

'Minimization of the sum of absolute errors > |ri| is much more complicated.
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with the help of singular value decomposition, which allows to approximate a matrix
by another matrix of lower rank and is also useful for linear regression, especially
if the columns of the data matrix are linearly dependent.

11.1 Least Square Fit

A (local) minimum of (11.4) corresponds to a stationary point with zero gradient.
For n model parameters there are n, generally nonlinear, equations which have to be
solved [123]. From the general condition

8SSd=O i=1...n (11.5)
aaj
we find
DA REEL (11.6)
aaj

i=1

which can be solved with the methods discussed in Chap.6. For instance, the
Newton—Raphson method starts from a suitable initial guess of parameters

@) ...d) (11.7)
and tries to improve the fit iteratively by making small changes to the parameters
s+1 __ s s
a;" =aq +Aaj. (11.8)

The changes Aq; are determined approximately by expanding the model function

2 Of (v, dl .. .a’)
s+1 s+1 s s g n s
i coay ) =f(x,a) .. .a, —Aa ... 11.9
e @t a) = fona) a>+;, Gy A (19)
to approximate the new residuals
o~ Of(ay..dl)
P = ZMALI% (11.10)

6 J
a;
j=1 1

and the derivatives

l

% _ _5'f(x,~, aj...a)
8Clj - (“)aj '

(11.11)
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Equation (11.6) now becomes

Z rf—zaf(Xi)Aq; of (x;) (11.12)

a; a
i=1 j=1 Oaj Oy

which is a system of n (usually overdetermined) linear equations for the Aa;, the
so-called normal equations:

) Of () o~ OF(x)
Adl = i —. 11.13
; jzl 8a‘1 60]( ! ; l 8(1]( ( )
With the definition
Of (xi) Of (xi)
Ay = 11.14
kj Z aak aaj ( )
- )
= — E i 11.1
bi m 4 Vi Oay ( >)

the normal equations can be written as

ZAijaj = by. (11.16)

11.1.1 Linear Least Square Fit

Especially important are model functions which depend linearly on all parameters
(Fig. 11.1 shows an example which is discussed in problem 11.1)

n

far...a) = afi(x). (11.17)

Jj=1
The derivatives are

Of (xi)
a a;

= fj(x) (11.18)

and the minimum of (11.4) is given by the solution of the normal equations
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Fig. 11.1 (Least square fit) 2.0x10°
The polynomial
C(T) = aT + bT? (full
curve) is fitted to a set of data Lsxio® F
points which are distributed ’
randomly around the “exact”
values C(T) = agT + byT? e sL
(dashed curve). For more « 10x10
details see problem 11.1
5.0x10" [
0.0
0
1 n m 1 m
— 2 2 S e = — 3 yifi () (11.19)
j=1 i=1 i=1

which for a linear fit problem become

> Aya; = by (11.20)
j=1
with
1 m
Ay = — ;‘,ﬁ(xi)fj(xi) (11.21)
b 12 i () (11.22)
= — iJk(Xi). .
k m - YiJk

Example: Linear Regression

For a linear fit function
fx) =a0+ ax (11.23)

the mean square difference is
S,dzli(y._ao_amz (11.24)
S m — 1 L *

and we have to solve the equations
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08y 1 —
0= 6a: = izzl()’i—ao—mxi):y—ao—aﬁ
8SY 1 m o
0= W:j = iél(yi—ao—alxi)xi =Xy — apX — a;x> (11.25)

which can be done here with determinants

g = > Y (11.26)

a = == __. (11.27)

11.1.2 Linear Least Square Fit with Orthogonalization

With the definitions
a Y1
ay Ym

and the m x n matrix

ap - A Si@xr) - fulxr)

SR (11.29)
Aml *** Apn fl(xm) fn(—xm)

the linear least square fit problem (11.20) can be formulated as a search for the
minimum of

|Ax — b| = \/(Ax — b)T (Ax — b). (11.30)
In the last section we calculated the gradient

J|Ax — b)?

5 =AT(Ax —b) + (Ax —b)TA =24TAx — 247b (11.31)
X
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and solved the normal equations
ATAx = ATb. (11.32)

This method can become numerically unstable. Alternatively we use orthogonaliza-
tion of the n column vectors a; of A to have

Fir ri2 - Fin

g =Ty
A=(@;---a,)=(q - q,) o (11.33)

rl’lf’l

where a; and q; are now vectors of dimension m. Since the q; are orthonormal
q/ qi = 6 we have

T ripr s Fin
4 ry v Foy
A= R (11.34)
T el
qn rl'[Vl

The qi can be augmented by another (1 — n) vectors to provide an orthonormal basis
of R™. These will not be needed explicitly. They are orthogonal to the first n vectors
and hence to the column vectors of A. All vectors q; together form an orthogonal
matrix

O=(q " Qu Qus1 ** qun) (11.35)

and we can define the transformation of the matrix A:

qi
.T R rll e rln
A= q‘%n (a1---an)=QTA=(0) R = S (11.36)
n.‘i»1 rnn
q,,
The vector b transforms as
b qf an+1
b=0"b= (b“) b= : |b b= : b (11.37)
l q, q,
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Since the norm of a vector is not changed by unitary transformations

Ib — Ax| = ,/(b, — Rx)2 + b}
which is minimized if

Rx =b,.
The error of the fit is given by

Ib — Ax| = [b].

Example: Linear Regression

Consider again the fit function
f(x) =aop+arx
for the measured data (x;, y;). The fit problem is to determine

1 X1 yl

|
a A .
0 — . = min.
a : |
|

|
|
|
| 1 xp Ym

Orthogonalization of the column vectors

1 X1
a; = a, =

1 Xm

with the Schmidt method gives:

r = /m

s

q =

|H...

=

1 m
Iy = —Zx,- = \/%f
ﬂ i=1

by = (x; — X)
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(11.38)

(11.39)

(11.40)

(11.41)

(11.42)

(11.43)

(11.44)

(11.45)

(11.46)

(11.47)
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rn =,/ Z(xi —%)? = /mo,

xi—x)
N

Transformation of the right hand side gives

q2 = (

Y1

@)(7)-)

m

and we have to solve the system of linear equations

o (FE) () (52)

The solution

Xy —Xy
ay =
(x —X)?
S et )
ap =y —xa; =
(x —X)?

coincides with the earlier results since

(x —%)2 =x2 — %

11.2 Singular Value Decomposition

Data Fitting

(11.48)

(11.49)

(11.50)

(11.51)

(11.52)

(11.53)

(11.54)

Computational physics often has to deal with large amounts of data. Singular value
decomposition is a very useful tool to reduce redundancies and to extract the most
important information from data. It has been used for instance for image compression
[124], it is very useful to extract the essential dynamics from molecular dynamics
simulations [125, 126] and it is an essential tool of Bio-informatics [127].
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11.2.1 Full Singular Value Decomposition

For m > n,? any real®> m x n matrix A of rank » < n can be decomposed into a
product

A=UxVT (11.55)
S1
aiy ... Ay uip ... Uy ( ) \ V11 ... Up
o = Do i Do (11.56)
sﬂ
Al - .- Ayp Upl -+« Umm \O...O Uiy «-. Upp

where U is a m x m orthogonal matrix, X is a m x n matrix, in which the upper part
is a n x n diagonal matrix and V is an orthogonal n x n matrix.

The diagonal elements s; are called singular values. Conventionally, they are sorted
in descending order and the last n — r of them are zero. For a square n x n matrix
singular value decomposition (11.56) is equivalent to diagonalization

A=USUT. (11.57)

11.2.2 Reduced Singular Value Decomposition

We write
U= U Un) (1158)

with the m x n matrix U,, and the m x (m — n) matrix U,,_, and
S
Y= ( O) (11.59)
with the diagonal n x n matrix S. The singular value decomposition then becomes
S\ yr T
A= U, Up—p) (0) Vi =U,SV (11.60)

which is known as reduced singular value decomposition. U, (usually simply denoted
by U) is not unitary but its column vectors, called the left singular vectors, are
orthonormal

2Qtherwise consider the transpose matrix.
3Generalization to complex matrices is straightforward.
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Zui,rui,s = 6}’,5 (11.61)
i=1

as well as the column vectors of V which are called the right singular vectors
z Vi Vs = 6r,s- (1162)
i=1

Hence the products
ulu,=v'v =E, (11.63)
give the n X n unit matrix.

In principle, U and V can be obtained from diagonalization of A”A and AAT,
since

ATA=wxTuhHwzvh =v(s,0) (f)) vl =vys?yT (11.64)

AAT = wzvhywETuh)y=U (‘3) S, 0Uv" =U,s*U!. (11.65)

However, calculation of U by diagonalization is very inefficient, since usually only
the first n rows are needed (i.e. U, ). To perform a reduced singular value decompo-
sition, we first diagonalize

ATA=vDVT (11.66)

which has positive eigenvalues d; > 0, sorted in descending order and obtain the
singular values

Vdy
S=D"= . (11.67)

Jd,
Now we determine a matrix U such, that
A=USV" (11.68)
or, since V is unitary

Y =AV =US. (11.69)
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The last n — r singular values are zero if r < n. Therefore we partition the matrices
(indices denote the number of rows)

(Y, 0) = (U, U_y) (Sr . ): (0,5, 0). (11.70)

We retain only the first 7 columns and obtain a system of equations

Yir - Vir Uy ... Uiy N
= Pl (11.71)
Yml - Ymr Uni - Unr Sy
which can be easily solved to give the first r rows of U
Uy ... Uy, Vi1 --- Vin Sl_l
= Do, . (11.72)
Uml - - Uny Yml « - Ymn s;l

The remaining n — r column vectors of U have to be orthogonal to the first 7 columns
but are otherwise arbitrary. They can be obtained for instance by the Gram Schmidt
method.

For larger matrices direct decomposition algorithms are available, for instance
[128], which is based on a reduction to bidiagonal form and a variant of the QL
algorithm as first introduced by Golub and Kahan [129].

11.2.3 Low Rank Matrix Approximation

Component-wise (11.60) reads
aij = Z Ui kSkVj k- (11.73)
k=1

Approximations to A of lower rank are obtained by reducing the sum to only the
largest singular values (the smaller singular values are replaced by zero). It can be
shown [130] that the matrix of rank [ < r

1

) = uisivy (11.74)
k=1
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is the rank-/ matrix which minimizes

> laij—al))*. (11.75)
ij

If only the largest singular value is taken into account, A is approximated by the
rank— 1 matrix

ay) = siui v (11.76)

As an example, consider a m X n matrix
x1(t1) ... x,(11)
A= : : (11.77)

X1 (.tm) cee xn(.tm)

which contains the values of certain quantities x; . .. x, observed at different times
t; ...t,. For convenience, we assume that the average values have been subtracted,
such that 2,'-11%- = 0. Approximation (11.76) reduces the dimensionality to 1,
i.e. a linear relation between the data. The i-th row of A,

(x1() - xa(1)) (11.78)
is approximated by
spuiy (Vi - ) (11.79)

which describes a direct proportionality of different observables

1 1
—x;(t;) = —xi(8). (11.80)
V.1 Uk, 1

According to (11.75) this linear relation minimizes the mean square distance
between the data points (11.78) and their approximation (11.79).

Example: Linear approximation [131]

Consider the data matrix

r (123 45
4 —(12.53.93.54.0 : (11.81)

First subtract the row averages

¥=3 y=2098 (11.82)
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to obtain

r_ (-2 -1 0 1 2
A _(—1.98 —0.48 0.920.521.02 ) (11.83)

Diagonalization of

r, _ (10.00 7.00
AA= ( 7.00 6.308) (11.84)

gives the eigenvalues
dy =15.393 4, =0915 (11.85)

and the eigenvectors

0.792 ~0.610
V= (0.610 —0.792) ' (11.86)

Since there are no zero singular values we find
—0.181 —0.380
—0.070 0.252
U=AVS™'=, 0036 0797 ;. (11.87)

0.072 -0.217
\ 0.143 —0.451

This gives the decomposition*
S1 vi T T
A= (lll 112) ( ) ( IT) =siuvy + sV,
852 \Z)

—2.212 —1.704 0.212 —-0.276
—0.860 —0.662 —0.140 0.182

= 0445 0343 |+ —0445 0577 . (11.88)
0.879  0.677 0.121 —0.157
1748 1.347 } \0.252 ~0.327

If we neglect the second contribution corresponding to the small singular value s, we
have an approximation of the data matrix by a rank — 1 matrix. The column vectors
of the data matrix, denoted as x and y, are approximated by

4u,~viT is the outer or matrix product of two vectors.
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2
17 —]
07 —]
>

= |
2+ .

! . ! . ! . ! . !

2 -1 0 1 2

X

Fig. 11.2 (Linear approximation by singular value decomposition) The data set (11.81) is shown as
circles. The linear approximation which is obtained by retaining only the dominant singular value
is shown by the squares and the full line. It minimizes the mean square distance to the data points.
Stars and the dashed line show the approximation by linear regression, which minimizes the mean
square distance in vertical direction

X =s5vu; y = 510210y (11.89)

which describes a proportionality between x and y (Fig. 11.2).

11.2.4 Linear Least Square Fit with Singular Value
Decomposition

The singular value decomposition can be used for linear regression [131]. Consider
a set of data, which have to be fitted to a linear function

y=co+cixy- -+ cuXy (11.90)
with the residual

ri =co+Cixi1 -+ CuXin — Vi (11.91)
Let us subtract the averages

ri—r=ci(x1 —X1) o+ X — X)) — i — ) (11.92)

which we write in matrix notation as
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r—r X1 = X1 «en Xy — Xn c yi—y
= : N : (11.93)
Im—T xm,l.—)_cl e X — X c.n ym.—y
or shorter
r=Xc—y. (11.94)
Now let us insert the full decomposition of X
r=UXVic—y. (11.95)
Since U is orthogonal
Ulr=2Vlie-Uly=>a—-b (11.96)
where we introduce the abbreviations
a=Vlie b=UTy. (11.97)
The sum of squared residuals has the form
2
we == (50 ()= (o))
=|S.a, — b, > +b>  <|S.a, —b,|% (11.98)
Hence a,_, is arbitrary and one minimum of Sp is given by
a,=S"'b a,,=0 (11.99)
which can be written more compactly as
a=2X"b (11.100)

with the Moore-Penrose pseudoinverse [132] of X

o
ot = . (11.101)

-1

L 7o)
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Finally we have
c=VXtUuly=Xx"y

where

Xt=vxtuT

is the Moore-Penrose pseudoinverse of X.

Example

The following data matrix has rank 2

-3 —4 -5 1.0

-2 -3 -4 1.1
X = 0 0 O y=

2 3 4 -1

3 4 5 —

A solution to the linear fit problem is given by

—-0.917 1.167 0 —1.167 0.917
c=X"y=| -0.167 0.167 0—0.167 0.167
0.583 —0.833 0 0.833 —0.583

The fit function is
vy =0.525(x; — x3)

and the residuals are

0.05
—0.05
Xe—y= 0
—0.05
0.05

11 Data Fitting

(11.102)

(11.103)

(11.104)

0.525
= 0.000
—0.525

(11.105)

(11.106)

(11.107)
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11.2.5 Singular and Underdetermined Linear Systems
of Equations

SVD is also very useful to solve linear systems with a singular or almost singular
matrix. Consider a system

ay ... Ay X1 bl
= : (11.108)

aml - Amn Xn bm

with n > m, i.e. more unknowns than equations. SVD transforms this system into

uil ... Uiy S1 0...0 V11 ... Uyl X1 b]
Ul - U Sn0...0 Vin -+ U X, b,
(11.109)
Substituting
—1
i Vil ... Unl X ci Uiy ... Uy b
= s el )=
Yn Uln - -+ Unn Xn Cm Unl -« Unm bm
(11.110)
it remains to solve
S 0...0 V1 C1
: = - (11.111)
sm0...0 Vn Cm
For y; ...y, the solution is
yi=sle i=1,...m (11.112)

whereas y,,4i ...y, are arbitrary and parametrize the solution manifold. Back
substitution gives

X=XP+Z (11.113)
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1 Data Fitting

with the particular solution

1 —1

V11 --- Uim Sl_ Uiy ... Uim by

X, = Dot Do : (11.114)

—1
Upl « -« Unm S Unl « -« Unm bm
and

Ui, m+1 «-- Vln Ym+1

7= : o : (11.115)
Un,m+11 «-- Unn Yn

which is in the nullspace of A

0 0

T Ym+1 Ym+1
Az=UxV'Vv | |=U(S0)| . [|=0. (11.116)

Yn Yn

If m — r singular values are zero (or if the smallest singular values are set to zero)
(11.111) becomes

S1 0...0
ool °
0...00...0 =1 (L117
: o Y Cm
0..00...0
which gives on the one hand
yi=sle i=1...r (11.118)
yi=arbitrary i=r+1...m (11.119)
but also requires
=0 i=r+1...m (11.120)

If this condition is not fulfilled, the equations are contradictory and no solution exists
(e.g. if two rows of A are the same but the corresponding elements of b are different).
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Problems

Problem 11.1 Least Square Fit

At temperatures far below Debye and Fermi temperatures the specific heat of a metal
contains contributions from electrons and lattice vibrations and can be described by

C(T) = aT + bT>. (11.121)
The computer experiment generates data

T, =T+ jAt (11.122)

Cj = (aoT; + boT})(1 + ¢)) (11.123)
with relative error

g =¢g. (11.124)
Random numbers & are taken from a Gaussian normal distribution function

(Sect.9.2.6).
The fit parameters a, b are determined from minimization of the sum of squares

1 n
S=- C; — aT; — bT?)>. 11.125
n;(j a i) ( )

Compare the “true values” ag, by with the fitted values a, b.




Chapter 12
Discretization of Differential Equations

Many processes in science and technology can be described by differential equations
involving the rate of changes in time or space of a continuous variable, the unknown
function. While the simplest differential equations can be solved exactly, a numer-
ical treatment is necessary in most cases and the equations have to be discretized
to turn them into a finite system of equations which can be solved by computers
[133-135]. In this chapter we discuss different methods to discretize differential
equations. The simplest approach is the method of finite differences, which replaces
the differential quotients by difference quotients (Chap.3). It is often used for the
discretization of time. Finite difference methods for the space variables work best
on a regular grid. Finite volume methods are very popular in computational fluid
dynamics. They take averages over small control volumes and can be easily used
with irregular grids. Finite differences and finite volumes belong to the general class
of finite element methods which are prominent in the engineering sciences and use
an expansion in piecewise polynomials with small support. Spectral methods, on the
other hand, expand the solution as a linear combination of global basis functions
like polynomials or trigonometric functions. A general concept for the discretization
of differential equations is the method of weighted residuals which minimizes the
weighted residual of a numerical solution. Most popular is Galerkin’s method which
uses the expansion functions also as weight functions. Simpler are the point colloca-
tion and subdomain collocation methods which fulfill the differential equation only
at certain points or averaged over certain control volumes. More demanding is the
least-squares method which has become popular in computational fluid dynamics
and computational electrodynamics. The least-square integral provides a measure
for the quality of the solution which can be used for adaptive grid size control.

Ifthe Green’s function is available for a problem, the method of boundary elements
is an interesting alternative. It reduces the dimensionality and is, for instance, very
popular in chemical physics to solve the Poisson—Boltzmann equation.

© Springer International Publishing AG 2017 255
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12.1 Classification of Differential Equations

An ordinary differential equation (ODE) is a differential equation for a function of
one single variable, like Newton’s law for the motion of a body under the influence
of a force field

d2
m X0 = F(x. 1), (12.1)

a typical initial value problem where the solution in the domain #p < ¢t < T is
determined by position and velocity at the initial time

d
x(t =t)) = Xp Ex(t =1y) = Vp. (12.2)

Such equations of motion are discussed in Chap. 13. They also appear if the spatial
derivatives of a partial differential equation have been discretized. Usually this kind
of equation is solved by numerical integration over finite time steps At = t,,4| — t,.
Boundary value problems, on the other hand, require certain boundary conditions' to
be fulfilled, for instance the linearized Poisson—Boltzmann equation in one dimension
(Chap. 18).

d? ) 1
— @ —KP=——p(x) (12.3)
dx? 5

where the value of the potential is prescribed on the boundary of the domain xy <
X =X

D(x9) =Dy P(x1) = Py. (12.4)

Partial differential equations (PDE) finally involve partial derivatives with respect
to at least two different variables, in many cases time and spatial coordinates.

Linear Second Order PDE

A very important class are second order linear partial differential equations of the
general form

N N N
0? 0
E E dijm—F E blﬁ_x, +c f(xl...xN)—}-d:O (125)

i=1 j=1 i=1

I Dirichlet b.c concern the function values, Neumann b.c. the derivative, Robin b.c. a linear combi-
nation of both, Cauchy b.c the function value and the normal derivative and mixed b.c. have different
character on different parts of the boundary.
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where the coefficients a;;, b;, ¢, d are functions of the variables x; ... xy but do not
depend on the function f itself. The equation is classified according to the eigenvalues
of the coefficient matrix a;; as [136]

Elliptical

If all eigenvalues are positive or all eigenvalues are negative, like for the Poisson
equation (Chap. 18)

LA P S (12.6)
o2 T oy T oz ) Py = —ew 9, .
Hyperbolic

If one eigenvalue is negative and all the other eigenvalues are positive or vice versa,
for example the wave equation in one spatial dimension (Chap.20).

5_;2 _czaa_; _o, (12.7)
Parabolic

If at least one eigenvalue is zero, like for the diffusion equation (Chap.21)

2 92 9

9
_ D=4+ = 4+ =
FrEARAR (8x2 o "oz

) fx,y,z,t) =S(x,y,z,t), (12.8)

Ultra-Hyperbolic

If there is no zero eigenvalue and more than one positive as well as more than one
negative eigenvalue. Obviously the dimension then must be 4 at least.

Conservation Laws

One of the simplest first order partial differential equations is the 1D advection
equation

) )
Ef(x,t) +ua—xf(x,t) =0 (12.9)

which describes transport of a conserved quantity with density f (for instance mass,
number of particles, charge etc.) in a medium streaming with velocity u. This is a
special case of the class of conservation laws (also called continuity equations)

%f(x, 1)+ divJ(x, 1) = g(x, 1) (12.10)

which are very common in physics. Here J describes the corresponding flux and g
is an additional source (or sink) term. For instance the advection-diffusion equation
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(also known as convection equation) has this form which describes quite general
transport processes:

%C = div (Dgrad C —uC) 4 S(x,t) = —divJ + S(x, 1) (12.11)

where one contribution to the flux

J=—-Dgrad C +uC (12.12)
is proportional to the gradient of the concentration C (Fick’s first law) and the second
part depends on the velocity field u of a streaming medium. The source term S
represents the effect of chemical reactions. Equation (12.11) is also similar to the

drift-diffusion equation in semiconductor physics and closely related to the Navier
Stokes equations which are based on the Cauchy momentum equation [137]

du Ju
— == =di f 12.1
0 P 0 (8[ + u grad u) dive + ( 3)

where o denotes the stress tensor. Equation (12.10) is the strong or differential form of
the conservation law. The requirements on the smoothness of the solution are reduced
by using the integral form which is obtained with the help of Gauss’ theorem

/ (ﬁ) fx, 1) — g(x, t)) dv + J(x,1)dA = 0. (12.14)
v \Ot v

An alternative integral form results from Galerkin’s [138] method of weighted
residuals which introduces a weight function w(x) and considers the equation

/ (gt fx, 1) +divJ(x, ) — g(x, t)) wx)dV =0 (12.15)
v
or after applying Gauss’ theorem
0
/ [(— Sx, 1) —g(x, t)) w(x) — J(x, 1) gradw(x)] dv
v | \or
+j£ wx)J(x, 1)dA = 0. (12.16)
v

The so called weak form of the conservation law states that this equation holds for
arbitrary weight functions w.
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12.2 Finite Differences

The simplest method to discretize a differential equation is to introduce a grid of
equidistant points and to discretize the differential operators by finite differences
(FDM) as described in Chap. 3. For instance, in one dimension the first and second
derivatives can be discretized by

X —=>Xp=mAx m=1...M (12.17)
f&) = fu=fCw) m=1...M (12.18)
af 0 fm+l fm 0 _ fm+1 B fm—l

ax - (8_xf)m Ax or (8_xf)m N 2Ax (12.19)
62f 82 _ fm+1 + fmfl - 2fm

g (af), = (1220

These expressions are not well defined at the boundaries of the grid m = 1, M unless
the boundary conditions are taken into account. For instance, in case of a Dirichlet
problem fj and f),4+ are given boundary values and

9 _h—fo (O _ L2+ 0
(5/), = 5 (o), =25 (220

_ _ 2 _
(Ef) _ Suri—fu or v — fu—1 (%f) _ vt = 2fm + fus .
M

Ox Ax 2Ax Ax?
(12.22)
Other kinds of boundary conditions can be treated in a similar way.
12.2.1 Finite Differences in Time
Time derivatives can be treated similarly using an independent time grid
t—>t,=nAt n=1...N (12.23)
F.x) = [ = f b Xm) (12.24)
and finite differences like the first order forward difference quotient
] n+1 n
—f f’" ~ (12.25)

ot At
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or the symmetric difference quotient

of _ o=t
_ —

T A (12.26)

to obtain a system of equations for the function values at the grid-points f,. For
instance for the diffusion equation in one spatial dimension

2
afg;,t) _ D%f(x,r)+5(x,t) (12.27)

the simplest discretization is the FTCS (forward in time, centered in space) scheme

At
= ) = Do (i + fri = 2f) + 8,41 (12.28)
which can be written in matrix notation as

At
£, —f, = D Mf, + S, At (12.29)
Ax?

with

Y 1and M= =21 1. (12.30)

12.2.2 Stability Analysis

Fully discretized linear differential equations provide an iterative algorithm of the
type?

f,1 = Af, + S, At (12.31)
which propagates numerical errors according to

fn-H + €1 = A(f, +€,) + S, At (12.32)

2Differential equations which are higher order in time can be always brought to first order by
introducing the time derivatives as additional variables.
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€11 = Aej. (1233)

Errors are amplified exponentially if the absolute value of at least one eigenvalue of
A is larger than one. The algorithm is stable if all eigenvalues of A are smaller than
one in absolute value (1.4). If the eigenvalue problem is difficult to solve, the von
Neumann analysis is helpful which decomposes the errors into a Fourier series and
considers the Fourier components individually by setting

eik

f,=g")| : (12.34)
eikM

and calculating the amplification factor

fn+1
m

I

The algorithm is stable if |g(k)| < 1 for all k.

= lg(®)l. (12.35)

Example For the discretized diffusion equation (12.28) we find

n+l1 n At n
g ) = " (k) +2D——5" k) (cosk — 1) (12.36)
X
At At ., (k
At
1—4D-— < g(k) <1 (12.38)
Ax?

hence stability requires

At

1
<= 12.39
Ax?2 — 2 ( )

12.2.3 Method of Lines

Alternatively time can be considered as a continuous variable. The discrete values
of the function then are functions of time (so called lines)

S (@) (12.40)

and a set of ordinary differential equations has to be solved. For instance for diffusion
in one dimension (12.27) the equations
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dfn D
? = ﬁ(fm+l +fm71 _me)—‘rSm(t) (1241)

which can be written in matrix notation as

fi -2 1 fi S+ fo
fi D 1 -2 1 b S,
T 1 =21 f S
dtl :2 | s o 11 :3 1+1 :3 |
ka} k 1 —2) ka} kSM—i-thfMH}
(12.42)
or briefly
d
Ef(t) = Af(t) + S(@). (12.43)

Several methods to integrate such a semi-discretized equation will be discussed in
Chap. 13. If eigenvectors and eigenvalues of A are easy available, an eigenvector
expansion can be used.

12.2.4 Eigenvector Expansion
A homogeneous system
d
30 = At (12.44)

where the matrix A is obtained from discretizing the spatial derivatives, can be solved
by an eigenvector expansion. From the eigenvalue problem

Af = \f (12.45)

we obtain the eigenvalues )\ and eigenvectors f) which provide the particular solu-
tions:

f(t) = eV £y (12.46)

d
a(e” £,) = MV ) = A(eM £)). (12.47)
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These can be used to expand the general solution

£(1) =D CreVf).
A

263

(12.48)

The coefficients C) follow from the initial values by solving the linear equations

f(t=0) = Z Cif).
A

If the differential equation is second order in time

d2
@f(t) = Af (1)

the particular solutions are
f(r) = etV f,

d2
@(e*’ﬁ £)) = MV 1)) = AV 1))

and the eigenvector expansion is

tn=> (C,\+e’ﬁ + cA,e—’ﬁ) f,.
A

The coefficients C+ follow from the initial amplitudes and velocities

f(1=0) =D (Cri +Crf
A

%f(r =0) = ; VACay = Crof.
For a first order inhomogeneous system
if(t) = Af(t) +S(t)
dr
the expansion coefficients have to be time dependent

f(t) = Z Cy(1)e ),
A

(12.49)

(12.50)

(12.51)

(12.52)

(12.53)

(12.54)

(12.55)

(12.56)
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and satisfy

d dc, ,

—f(t) — Af(t) = —ZeMfy, = S(). 12.57
10 (1) Z;,dteA (1) (12.57)

After taking the scalar product with f,*

dc,,

= (6,50) (12.58)

can be solved by a simple time integration. For a second order system

d2
@f(t) = Af(t) + S(¢) (12.59)

we introduce the first time derivative as a new variable
_d f (12.60)
8= '

to obtain a first order system of double dimension

i ()= (00) () + (0) e

where eigenvectors and eigenvalues can be found from those of A (12.45)

(20) (o) = (367) == (05w, 122
(=1 £7) (2 (1)) = (M7 V) ==X (VAT E]). (12:69)

Insertion of

VM fa —\t £\
; Crre (ﬁn) e (—ﬁfx)

gives
dC)\+ NoY, f,\ dCA— NAY: f)\ S(t)
= 12.64
;dte o) e o = 0 (1269

3If A is not Hermitian we have to distinguish left- and right-eigenvectors.
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and taking the scalar product with one of the left-eigenvectors we end up with

dcyy 1 S
Mt 12.
” 5 ( AS(1)) e (12.65)
e, 1 i
=—=( : 12.
o 5 BS@)e (12.66)

12.3 Finite Volumes

Whereas the finite differences method uses function values

Sije = fxi, v, z) (12.67)

at the grid points
Cijk = (Xi, ¥j, 26)s (12.68)

the finite volume method (FVM) [139] averages function values and derivatives over
small control volumes V, which are disjoint and span the domain V (Fig. 12.1)

V= U v, V, ﬂ Vo =0vr< r'. (12.69)

Fig. 12.1 (Finite volume method) The domain V is divided into small control volumes V,, in the
simplest case cubes around the grid points r;jx
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The averages are

f = i/ dv f(r) (12.70)
Vr v,

or in the simple case of cubic control volumes of equal size /*

_ 1 xi+h/2 yj+h/2 2%+h/2
Fije = —/ dX/ dy/ dz f(x,y,2). (12.71)
X, y Z

B3 J—np i—h/2 i—h/2

Such average values have to be related to discrete function values by numerical
integration (Chap.4). The midpoint rule (4.17), for instance replaces the average by
the central value

Fii = @i, yj,2) + O(h*) (12.72)

whereas the trapezoidal rule (4.13) implies the average over the eight corners of the
cube

— 1
Fin=7g 22 J@ism Yiswp serp) + OG). (12.73)

m,n, p==xl
In (12.73) the function values refer to a dual grid (Fig. 12.2) [139] centered around
the vertices of the original grid (12.68).

h h h
i1, j41/2,k+1/2 = (Xi + 5, yi+ 5, 2k + 5) (12.74)

Fig. 12.2 (Dual grid) The
dual grid (black) is centered
around the vertices of the
original grid (red) | A I AR R ®
Xi | Vi1 Xie1 | Y1
Xivg VYieve | XuwwziVie | i
XI y] Xi+1 y j

®
Xi1/2Yj-1/2 Xiv1/2Yj-1/2
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The average gradient can be rewritten using the generalized Stokes’ theorem as

- 1

grad fijr = — dV grad f(r) = f(r)dA. (12.75)
14 Vijk OViji

For a cubic grid we have to integrate over the six faces of the control volume

+h/2 i+h/2
JIAT dz yy/’_h/z dy (fei+2y.200— fi —4,y.2)

h/2 i+h/2
S dz [T dx (fiy + 40— fy — L, )

i+h/2 +h/2
Four dx [ dy (fGanyoa ) = fiyoz—

grad fijx fijk = s

(12.76)

The integrals have to be evaluated numerically. Applying as the simplest approxi-
mation the midpoint rule (4.17)

xi+h/2 yi+h/2
/ dx/ dy f(x,y) = (f(xi,y) + O(h?)) (12.77)

xi—h/2 vj—h/2
this becomes

Foi+ %y 20— fli— 5y 20)
gmmw7-ﬂmn+gm—ﬂmn—gm (12.78)
Fiyia+% = fanya—5

which involves symmetric difference quotients. However, the function values in
(12.78) refer neither to the original nor to the dual grid. Therefore we interpolate
(Fig.12.3).

h
S £ »)’ka) (f(xi+1,yj,zi)+f(xi71,yj,zi)) (12.79)
h h
(f(-xl 7ijzk) f(xl ’y/aZk)
1
~ 7 (f ity yjo20) — fiets yj 2x) (12.80)

or

f :l': —h E f +"l +”—h (12 81)
i 2 ’ j s 1 A 2 . .
X y] Tk Xi y] s Lk

The finite volume method is capable of treating discontinuities and is very flexible
concerning the size and shape of the control volumes.
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Fig. 12.3 (Interpolation @ Q
between grid points)
Interpolation is necessary to Xic1e Vet Xiv12 Ytz
relate the averaged gradient PSR S °
(12.78) to the original or ! .
dual grid

) O/

0 © T

Xiotizg Yisve | itz § Vive
[C

12.3.1 Discretization of fluxes

Integration of (12.10) over a control volume and application of Gauss’ theorem gives
the integral form of the conservation law

lj{JdA+£i/de—l/ dv (12.82)
% o v “v)Y '

which involves the flux J of some property like particle concentration, mass, energy
or momentum density or the flux of an electromagnetic field. The total flux through
a control volume is given by the surface integral

®=¢ JdA (12.83)

ov

which in the special case of a cubic volume element of size 43 becomes the sum over
the six faces of the cube (Fig. 12.4).

6
® = Z/A JdA
r=1 r

_xi+h/2 yj+h/2 h h
=/ dx/ dy (Jz(x,y,zwr—)—Jz(x,y,Zk——)
xi—h/2 yi—h/2 2 2
xi+h/2 zk+h/2 h h
+/ dx/ dz (Jy (x,yj+—,z)—fz(x,yj——,z)
xi—h/2 2—h/2 2 2
2x+h/2 yi+h/2 h h
+/ dz/ dy (Jx(xi—}-—,y,z)—Jz(xi——,y,z).
w-hz Jy-np 2 2

(12.84)
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Fig. 12.4 Flux through a Jz(z+h/2)

control volume
Jy(y+h/2)

Julx=hi2) | ———= J, (x+h/2)

IR

Jyly-hr2)

Jo(z-h/2)

The surface integral can be evaluated numerically (Chap.4). Using the midpoint
approximation (12.77) we obtain

1 1
Vq)(xi, Vi, 2i) = 7 (- (xis yis zrgp — J2(Xis Vi 2re1p)

+Jy (XY 2) — Ty (s Yjmiss 2) + Je (i, ¥y 20) — Je iz, ¥i, 20)) -
(12.85)

The trapezoidal rule (4.13) introduces an average over the four corners (Fig. 12.3)

Xi+h)2 yi+h/2
/ dx / dy F(x. y)
X y

i—h/2 yi—h/2
1

:”2(1 > f(x,»+m/z,y,»+n/z)+0(h2>) (12.86)
m,n==1

which replaces the flux values in (12.85) by the averages

1
ey 35,20 = 7 2 Sy Yiem/2s Teins2) (12.87)
m,n==1
1
Iy Yy 20 = 7 2 T, i Teins2) (12.88)
m,n==x1
1
J(xi, Yis Zkil/z) = Z Z JZ(Xi+m/2, Yjt+n/2s Zkil/z). (12.89)
m,n==1

One advantage of the finite volume method is that the flux is strictly conserved.
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12.4 Weighted Residual Based Methods

A general method to discretize partial differential equations is to approximate the
solution within a finite dimensional space of trial functions.* The partial differential
equation is turned into a finite system of equations or a finite system of ordinary
differential equations if time is treated as a continuous variable. This is the basis of
spectral methods which make use of polynomials or Fourier series but also of the
very successful finite element methods. Even finite difference methods and finite
volume methods can be formulated as weighted residual based methods.

Consider a differential equation® on the domain V which is written symbolically
with the differential operator 7°

Tu@®]=f@r) reV (12.90)

and corresponding boundary conditions which are expressed with a boundary oper-
ator 3°

Blu(r)] = g(r) redV. (12.91)
The basic principle to obtain an approximate solution z(r) is to choose a linear

combination of expansion functions N;(r) i = 1...r as a trial function which
fulfills the boundary conditions’

i = Zu,-zv,- (r) (12.92)
i=1
Blu(r)] = g(r). (12.93)

In general (12.92) is not an exact solution and the residual
R(r) =T [a] (r) — f(r) (12.94)
will not be zero throughout the whole domain V. The function # has to be deter-

mined such that the residual becomes “small” in a certain sense. To that end weight
functions® w; j = 1...r are chosen to define the weighted residuals

4 Also called expansion functions.
3Generalization to systems of equations is straightforward.

50ne or more linear differential operators, usually a combination of the function and its first deriv-
atives.

TThis requirement can be replaced by additional equations for the u;, for instance with the tau
method [140].

8 Also called test functions.
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Rj(uy...u,) = /dV w;(r) (T [ft] r)— f(@). (12.95)
The optimal parameters u; are then obtained from the solution of the equations
Rj(uy...u)=0 j=1...r. (12.96)

In the special case of a linear differential operator these equations are linear

ZMi/dV w;(0)T [N;(r)] —/dV w;(r) f(r) = 0. (12.97)
i=1

Several strategies are available to choose suitable weight functions.

12.4.1 Point Collocation Method

The collocation method uses the weight functions w;(r) = d(r — r;), with certain
collocation points r; € V. The approximation & obeys the differential equation at
the collocation points

0=R; =Tlua](rj) — f(r)) (12.98)

and for a linear differential operator

r

0=">u; TIN;(x;) — f(x)). (12.99)

i=1

The point collocation method is simple to use, especially for nonlinear problems.
Instead of using trial functions satisfying the boundary conditions, extra collocation
points on the boundary can be added (mixed collocation method).

12.4.2 Sub-domain Method

This approach uses weight functions which are the characteristic functions of a set
of control volumes V; which are disjoint and span the whole domain similar as for
the finite volume method

v=v, vi(\Vi=ovi« (12.100)
j
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1 reV;
w;(r) = HO else.j

The residuals then are integrals over the control volumes and

0=R, = /V 4V (T [d] () — )

J

respectively

0=Zu,»/ dVT[Ni](r)—/ dv f(r).
i V; V;

12.4.3 Least Squares Method

(12.101)

(12.102)

(12.103)

Least squares methods have become popular for first order systems of differential
equations in computational fluid dynamics and computational electrodynamics [141,

142].

The L2-norm of the residual (12.94) is given by the integral

S = / dV R(r)>.
14
It is minimized by solving the equations

0—§=2/dV@ R(r)
v 0

0uj Mj

which is equivalent to choosing the weight functions

OR 0
wj(r) = 8—uJR(I') = 8—]4]7— |:ZI/L,'N,'(I')

or for a linear differential operator simply

w;(r) =T [N;r)].

(12.104)

(12.105)

(12.106)

(12.107)

Advantages of the least squares method are that boundary conditions can be
incorporated into the residual and that S provides a measure for the quality of the
solution which can be used for adaptive grid size control. On the other hand S involves
a differential operator of higher order and therefore much smoother trial functions

are necessary.
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12.4.4 Galerkin Method

Galerkin’s widely used method [138, 143] chooses the basis functions as weight
functions

w;(r) = N;(r) (12.108)

and solves the following system of equations

/dV N;(r)T |:Z uiNi(r):| — /dV Nir)f(r)=0 (12.109)
or in the simpler linear case

Zui/dVNj(r)T[N,»(r)]:/dVNj(r)f(r). (12.110)
\%4 |4

12.5 Spectral and Pseudo-Spectral Methods

Spectral methods use basis functions which are nonzero over the whole domain, the
trial functions being mostly polynomials or Fourier sums [144]. They can be used to
solve ordinary as well as partial differential equations. The combination of a spectral
method with the point collocation method is also known as pseudo-spectral method.

12.5.1 Fourier Pseudo-Spectral Methods

Linear differential operators become diagonal in Fourier space. Combination of
Fourier series expansion and point collocation leads to equations involving a dis-
crete Fourier transformation, which can be performed very efficiently with the Fast
Fourier Transform methods.

For simplicity we consider only the one-dimensional case. We choose equidistant
collocation points

Xm=mAx m=0,1...M —1 (12.111)

and expansion functions

2

Njx) =" k=

j=01...M—1. (12.112)

For a linear differential operator
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£[eiij] — l(k])elk/x

and the condition on the residual becomes

M—1
0= Ry = > ujltkje"s™ — f(x,)

j:
or

M—1

f(xm) = z ujl(kj)eiZij/M

j=0

Discretization of Differential Equations

(12.113)

(12.114)

(12.115)

which is nothing but a discrete Fourier back transformation (Sect.7.2, 7.19) which

can be inverted to give

M-1
1 -
u; l(k]) — N § f(xm)e—IZﬂ’m]/M.
m=0

(12.116)

Instead of exponential expansion functions, sine and cosine functions can be used
to satisfy certain boundary conditions, for instance to solve the Poisson equation

within a cube (Sect. 18.1.2).

12.5.2 Example: Polynomial Approximation

Let us consider the initial value problem (Fig. 12.5)

d
d—u(x) —u(x)=0 u@) =1 for0<x <1 (12.117)
x

with the well known solution

u(x) =e".

(12.118)

We choose a polynomial trial function with the proper initial value

A(x) =14 upx + usx>.

The residual is

(12.119)

R(x) = uy+2ux — (1 + urx + upx?) = (uy — D+ Qur—u1)x —urx”. (12.120)




12.5 Spectral and Pseudo-Spectral Methods 275

Fig. 12.5 (Approximate 0.02
solution of a simple
differential equation) The 0

initial value problem

%u(x) —ux)=0
u@)=1 forO0<x <1lis
approximately solved with a
polynomial trial function
d(x) =14+ u1x + urx?. The
parameters u o are 20.06
optimized with the method
of weighted residuals using
point collocation (full curve), ‘ ‘ ‘ ‘
sub-domain collocation 0 0.2 0.4 0.6 0.8 1
(dotted curve), Galerkin’s X

method (dashed curve) and

least squares (dash-dotted

curve). The absolute error 0
i(x) —e* (Top) and the

residual £
R(x) = Li(x) —ii(x) = 0.1 ¢
(1 —1)+Qua—up)x —ux? :
both are smallest for the least
squares and sub-domain
collocation methods

-0.02

-0.04

absolute error

-0.08

-0.2

residual

12.5.2.1 Point Collocation Method

For our example we need two collocation points to obtain two equations for the two
unknowns u ». We choose x; = 0, x; = % Then we have to solve the equations

RGx)=u;—1=0 (12.121)

1 3
R(x) = Zur+ Jur =1 =0 (12.122)

which gives

uy =1 up = (12.123)

B W N

ue=14x+ gxz. (12.124)
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12.5.2.2 Sub-domain Method

We need two sub-domains to obtain two equations for the two unknowns u; ,. We
choose Vi = {x,0 < x < %}, Vo = {x, % < x < 1}. Integration gives

R, = §u1+iu2—l:0 (12.125)
8 24 2
Rgzlul—i-ﬂug—l:() (12.126)
8 24 2
6
Uy =up; = 7 (12.127)
6 6 ,
Usgge = 1+3x+§x . (12.128)

12.5.2.3 Galerkin Method

Galerkin’s method uses the weight functions w; (x) = x, w»(x) = x2. The equations

: 1 5 1
d R = - —uy—==0 12.12
/0 x wy (x)R(x) gt a5 ( 9)
/ld ()R()—1 +3 1—0 (12.130)
o X WX X —12141 1OM2 3— .

have the solution
Uy =— Uy=— (12.131)

10
ug =14+ —x 4+ —x= (12.132)

12.5.2.4 Least Squares Method

The integral of the squared residual

S—/ld R(x)?> =1 4 +12+1 +8 2 (12.133)
= A X X = ui 3u2 31/[] 2u1u2 151/!2 .
is minimized by solving
oS 2 1
= —Uux + —~Uy — 1=0 (12134)

ou, 3 2
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o5 _ 1,418 4 _o (12.135)
—_— = U —_— Uy — — = .
ou, 2T 1573

which gives

72 70
== = — 12.136
=gz = ( )
72 70
ups =14+ —x + —x2. (12.137)
83" 83

12.6 Finite Elements

The method of finite elements (FEM) is a very flexible method to discretize partial
differential equations [145, 146]. It is rather dominant in a variety of engineering
sciences. Usually the expansion functions N; are chosen to have compact support.
The integration volume is divided into disjoint sub-volumes

v=Jv vi[\Vi=0vi+ i (12.138)
i=1

The N;(x) are piecewise continuous polynomials which are nonzero only inside V;
and a few neighbor cells.

12.6.1 One-Dimensional Elements

In one dimension the domain is an interval V = {x; a < x < b} and the sub-volumes
are small sub-intervals V; = {x; x; < x < x;41}. The one-dimensional mesh is the
set of nodes {a = xq, x; ...x, = b}. Piecewise linear basis functions (Fig. 12.6) are
in the 1-dimensional case given by

Xit1—X
m for Xi < X < Xj+1
Ni(x) = % forx,_; <x < x; (12.139)

0 else

and the derivatives are (except at the nodes x;)

1
Xit1—Xi

Ni(x) = L forx, | <x <xi - (12.140)

Xi—=Xj—1

forx; < x < x4

0 else
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Fig. 12.6 (Finite elements in one dimension) The basis functions N; are piecewise continuous
polynomials and have compact support. In the simplest case they are composed of two linear
functions over the sub-intervals x;_; < x < x; and x; < x < x4

Fig. 12.7 (Triangulation of y
a two dimensional domain)

A two-dimensional mesh is

defined by a set of node

points which can be regarded

to form the vertices of a

triangulation

12.6.2 Two-and Three-Dimensional Elements

In two dimensions the mesh is defined by a finite number of points (x;, y;) € V (the
nodes of the mesh). There is considerable freedom in the choice of these points and
they need not be equally spaced.

12.6.2.1 Triangulation

The nodes can be regarded as forming the vertices of a triangulation® of the domain
V (Fig. 12.7).

The piecewise linear basis function in one dimension (12.139) can be generalized
to the two-dimensional case by constructing functions N; (x, y) which are zero at all
nodes except (x;, ;)

Ni(xj, yj) = i (12.141)

The triangulation is not determined uniquely by the nodes.
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X X

Fig. 12.8 (Finite elements in two dimensions) The simplest finite elements in two dimensions are
piecewise linear functions N; (x, y) which are non-vanishing only at one node (x;, y;) (Right side).
They can be constructed from small pyramids built upon one of the triangles that contains this node
(Left side)

These functions are linear over each triangle which contains the vertex i and can
be combined as the sum of small pyramids (Fig. 12.8). Let one of the triangles be
denoted by its three vertices as T;jx.'" The corresponding linear function then is

nijr(x, y) = a+ Be(x —x;) + By (y — i) (12.142)

where the coefficients follow from the conditions

nije(xi, yi) =1 nije(xj, y;) =nir(xg, yi) =0 (12.143)
as
Vi — Yk X — Xj
—1 B, = - 12.144
a & A By 2 ( )
with
1 ey —
Agji = = det |V T TR (12.145)
’ 2 Vi = Yi Yk — Vi

which, apart from sign, is the area of the triangle 7;;. The basis function N; now is
given by

nii(x, x,y) € T;;
N,»<x,y>=[ i y()) (5, 2) € Tk

In three dimensions we consider tetrahedrons (Fig. 12.9) instead of triangles. The
corresponding linear function of three arguments has the form

nijki(x,y,2) =a+ B(x —x;) + By (y — yi) + B.(z — zi) (12.146)

10The order of the indices does matter.
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Fig. 12.9 (Tetrahedron) The
tetrahedron is the
three-dimensional case of an
Euclidean simplex, i.e. the
simplest polytop

and from the conditions n; j x ;(x;, yi, z;) = 1 and n; j x; = 0 on all other nodes we
find (an algebra program is helpful at that point)

a=1

B 1 detlyk_yj)’l_yjl
X

6V % —2j a2
1 ly, — . 7 — oy |
B, = det ik —Zj 2 —Zj
Y 6Vijkl I)Ck—)Cj Xl—XjI
1 ey —xj x —x; !

B, = det ! ! (12.147)

T 6V = vivi— !
where Vi is, apart from sign, the volume of the tetrahedron
I)CJ' — Xi X — X; X —)Cl'l

Vijir = g det!y; —yi ye =y v =il (12.148)
2j =% Tk — 3% -z

12.6.2.2 Rectangular Elements

For a rectangular grid rectangular elements offer a practical alternative to triangles.
Since equations for four nodes have to be fulfilled, the basic element needs four
parameters, which is the case for a bilinear expression. Let us denote one of the
rectangles which contains the vertex i as R; ; ;. The other three edges are

(xj,v)) =(x; +by,yi) Ok, ) =i, yi +by) (x5, y1) = (x; + by, yi +by)
(12.149)

where by = £h,, b, = h, corresponding to the four rectangles with the common
vertex i (Fig. 12.10).
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XY Xk Yk
e bl A
e .

1 XY, X; X

Fig. 12.10 (Rectangular elements around one vertex) The basis function N; is a bilinear function
on each of the four rectangles containing the vertex (x;, y;)

Xi_q f X;
Fig. 12.11 (Bilinear elements on a rectangular grid) The basis functions N; (x, y) on a rectangular
grid (Right side) are piecewise bilinear functions (Left side), which vanish at all nodes except
(i, yi)
The bilinear function (Fig. 12.11) corresponding to R;j is
ni i, y) =a+ B —xi) +y(Q —y) +nx —x)(y — yi). (12.150)

It has to fulfill

et y) =1 n (g, y) = ni ki) =05 jxi(xa, y) =0

(12.151)
from which we find
1 1 1
-1 - - _—— p= 12.152
o=l A= = TS (12.152)

xX—=x; y—=yi  x=x)Q—w)
i ,y)=1-— — . 12.153
nijii(x,y) b b, + by b, ( )
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Fig. 12.12 (Three- esTTTTTTT T ot
dimensional rectangular et
grid) The basis function N; R Pl -
is trilinear on each of the
eight cuboids containing the
vertex i. It vanishes on all
nodes except (x;, ¥i, 2i)

The basis function centered at node i then is
' _ [ miaa(ey) (x,y) € Rijik
Ni(x,y) = [ 0 else . (12.154)

Generalization to a three dimensional grid is straightforward (Fig.12.12). We
denote one of the eight cuboids containing the node (x;, y;, z;) as C; . j, with
X ¥ 2j) = G + by, yiszi) oo (X5, Vi 2j) = (5 + by, i + by, zi + by).
The corresponding trilinear function is

A—X Y= 27
b, by b,
n (x—=x;) (y—») n x—x)(z—z)  @—z) -y
b, by b, b, b, by
X)) =) @ —zi)
b, by b, ’

Niji.j; =1—

(12.155)

12.6.3 One-Dimensional Galerkin FEM

As an example we consider the one dimensional linear differential equation (12.5)

2
( 0 +b3+c)u(x>=f<x) (12.156)

a —_—
Ox? Ox
in the domain 0 < x < 1 with boundary conditions

u(0) =u(l) =0. (12.157)
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We use the basis functions from (12.139) on a one-dimensional grid with
(12.158)

Xit1 — X = h;

and apply the Galerkin method [147]. The boundary conditions require
(12.159)

Uy =UuUny—-1 = 0.

The weighted residual is

0=R; —Z:u,/d)cN(x)(a2 a—i—c)N(x) /de(x)f(x)
(12.160)

First we integrate
hi+;li—l j=i
: boj=i+1
/ N;(0)N;(x) dx = NiNiydx =4 ,6 7= T8 2161
0o i1 = Jj=i—-1
0 i—jl>1

Xit1

Integration of the first derivative gives
0 j=i
(12.162)

1
/ dx N;(x)N/(x) = oL
0 -3 ] = i+1

For the second derivative partial integration gives

1 2
/ de(x) o N(x)
1
= N;(1)N/(1 —e) — N;(O)N;(0 + ¢) —/ dx N}(x)Nl- (x) (12.163)
0

where the first two summands are zero due to the boundary conditions. Since

N; and N/ are nonzero only for x; | < x < x;;; we find
mgmie
1 9?2 Xig1 -1 _ ; i=j
/ dx N; (x) N (x) = / dx N/i(x) Nj(x) = i hie
i |
Xioi h_, j=i+1
0 else

(12.164)
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Integration of the last term in (12.160) gives

1 Xit+1
/ dej(x)f(x):/ dx N;(x) f(x)

0 Xi—1

Xi X _xj—l Xitt xj+l — X
= dx —— = f(x) + dx == £ (x). (12.165)
Xi Xj—1 x —Aj

- Xj i Xj+1 X
Applying the trapezoidal rule'! for both integrals we find

hj+hj_y

12.166
5 ( )

/ N A F)

Xj-1

The discretized equation finally reads

1 Lol ]
ayj—uj1—\—+-—Y)u;+—u;
Ry T Ny TR )

1 1
+b [_Euj—l + Euj-kl]

hj_ hj+hj_ h

— itz +2hf*1 (12.167)

which can be written in matrix notation as
Au = Bf (12.168)

where the matrix A is tridiagonal as a consequence of the compact support of the
basis functions

_1t_1r 1
{h, 7o’

I 1
A_a 1 h/’—l’ /’lj hjfl’ hj

k [ R
hy-3’  hyoa hy-3

"Higher accuracy can be achieved, for instance, by Gaussian integration.
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1
0, 5
1 1
+b -0, 3
1
10
(h1+ho) hy
3 06
M (hy—2+hn-3)
6 b 3 9
ho+hy
2
B = hjzith; (12.169)
hy_athy—3
2
For equally spaced nodes h; = h;_; = h and after division by £ (12.169) reduces to
a system of equations where the derivatives are replaced by finite differences (12.20)

1
[aﬁMz +sz1 +CM() u= f

(12.170)
with the so called consistent mass matrix

=
Wiy .
|

(12.171)
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and the derivative matrices

My =, - ! M, = (12.172)
I .
The vector u is replaced by
1

Moyua= |1+ gMz u. (12.173)

Within the framework of the finite differences method
1 h? (d*u 4
uj+8(uj_1—2uj+uj+1):uj+€ E +0(h) (12174)

J

hence replacing it by u ; (this is called mass lumping) introduces an error of the order
O(h?).

12.7 Boundary Element Method

The boundary element method (BEM) [148, 149] is a method for linear partial differ-
ential equations which can be brought into boundary integral form'? like Laplace’s
equation (Chap. 18)"3

—AP(r) =0 (12.175)
for which the fundamental solution

AG(r,r') = —0(r — 1)

is given by

1
G(r —r') = ———— in three dimensions (12.176)
4rr — 1|

12This is only possible if the fundamental solution or Green’s function is available.
13The minus sign is traditionally used.
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1
Gor—r)=—In
2 |r—1r'|

in two dimensions. (12.177)
We apply Gauss’s theorem to the expression [150]

div [G(r — r)grad(®(r)) — ®(r)grad(G(r — r'))]
= —dT)AG(r —T)). (12.178)

Integration over a volume V gives

jl{ dA (G(r — r/)ﬂ(cb(r)) — qﬁ(r)g(G(r — r/)))

ov on on

- —/ AV (@@MAGE — 1)) = o). (12.179)
%

This integral equation determines the potential self-consistently by its value and
normal derivative on the surface of the cavity. It can be solved numerically by dividing
the surface into a finite number of boundary elements. The resulting system of linear
equations often has smaller dimension than corresponding finite element approaches.
However, the coefficient matrix is in general full and not necessarily symmetric.



Chapter 13
Equations of Motion

Simulation of a physical system means to calculate the time evolution of a model
system in many cases. We consider a large class of models which can be described
by a first order initial value problem

dy
o =S @.n Y@=0)=TYo (13.1)

where Y is the state vector (possibly of very high dimension) which contains all
information about the system. Our goal is to calculate the time evolution of the state
vector Y (t) numerically. For obvious reasons this can be done only for a finite number
of values of t and we have to introduce a grid of discrete times t, which for simplicity
are assumed to be equally spaced':

fas1 = by + At. (13.2)

Advancing time by one step involves the calculation of the integral

Y(tat1) = Y(ta) = " fY @), Har (13.3)

Iy

which can be a formidable task since f (Y (t), t) depends on time via the time depen-
dence of all the elements of Y (t). In this chapter we discuss several strategies for the
time integration. The explicit Euler forward difference has low error order but is use-
ful as a predictor step for implicit methods. A symmetric difference quotient is much
more accurate. It can be used as the corrector step in combination with an explicit
Euler predictor step and is often used for the time integration of partial differen-
tial equations. Methods with higher error order can be obtained from a Taylor series
expansion, like the Nordsieck and Gear predictor-corrector methods which have been
often applied in molecular dynamics calculations. Runge—Kutta methods are very
important for ordinary differential equations. They are robust and allow an adaptive

L Control of the step width will be discussed later.
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control of the step size. Very accurate results can be obtained for ordinary differential
equations with extrapolation methods like the famous Gragg-Bulirsch-Stoer method.
If the solution is smooth enough, multistep methods are applicable, which use infor-
mation from several points. Most known are Adams-Bashforth—-Moulton methods
and Gear methods (also known as backward differentiation methods), which are
especially useful for stiff problems. The class of Verlet methods has been developed
for molecular dynamics calculations. They are symplectic and time reversible and
conserve energy over long trajectories.

13.1 The State Vector

The state of a classical N-particle system is given by the position in phase space, or
equivalently by specifying position and velocity for all the N particles

Y=(l'],V],...,I‘N,VN). (134)

The concept of a state vector is not restricted to a finite number of degrees of free-
dom. For instance a diffusive system can be described by the particle concentrations
as a function of the coordinate, i.e. the elements of the state vector are now indexed
by the continuous variable x

Y = (c1(x), ...cu(x)) . (13.5)

Similarly, a quantum particle moving in an external potential can be described by
the amplitude of the wave function

Y = (¥ x). (13.6)

Numerical treatment of continuous systems is not feasible since even the ultimate
high end computer can only handle a finite number of data in finite time. Therefore
discretization is necessary (Chap. 12), by introducing a spatial mesh (Sects. 12.2,
12.3, 12.6), which in the simplest case means a grid of equally spaced points

Xijx = (ih, jh, kh) i = 1. imax,j = 1ojmaxs k = 1..kmax (13.7)
Y= (Cl(X,:/‘k) . CM(Xijk)) (138)
Y = (¥ (xp) (13.9)

or by expanding the continuous function with respect to a finite set of basis functions
(Sect. 12.5). The elements of the state vector then are the expansion coefficients
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N
¥ >=>Cl¥ > (13.10)

s=1

Y =(Cy,...,Cy). (13.11)

If the density matrix formalism is used to take the average over a thermodynamic
ensemble or to trace out the degrees of freedom of a heat bath, the state vector instead
is composed of the elements of the density matrix

N N

N
p=2D 2 pwl¥ >< Wl =D > CCI¥ >< ¥l (13.12)

s=1 s'=1 s=1 s'=1

Y =(p11- - piNs P21 PN+ -+ » PN1* " * PNN) - (13.13)

13.2 Time Evolution of the State Vector

We assume that all information about the system is included in the state vector. Then
the simplest equation to describe the time evolution of the system gives the change
of the state vector

dy

—=f,t 13.14

I fx, 0 ( )
as a function of the state vector (or more generally a functional in the case of a
continuous system). Explicit time dependence has to be considered for instance to
describe the influence of an external time dependent field.

Some examples will show the universality of this equation of motion:

e N-particle system

The motion of N interacting particles is described by

a ..

— =, Vo) =(vi,a;--+) (13.15)

dr
where the acceleration of a particle is given by the total force acting upon this particle
and thus depends on all the coordinates and eventually time (velocity dependent
forces could be also considered but are outside the scope of this book)

_ Fi(xry---ry, 1)

m;

i

(13.16)
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e Diffusion

Heat transport and other diffusive processes are described by the diffusion equation

% = DAf + S(x, 1) (13.17)

which in its simplest spatially discretized version for 1-dimensional diffusion reads

of (x; D
lgg=’Z;G@Ho+faho—zﬂ&»+swhw (13.18)
e Waves

Consider the simple 1-dimensional wave equation

OFf _ L0f

=t 13.19

a2~ < o ( )
which by introducing the velocity g(x) = %f (x) as an independent variable can be
rewritten as

O 9. 900 = (909, & o0 (13.20)

—_ = N C — . .

o VI I o
Discretization of space gives

0 c?

N (fFxi, g(x) = | g(xi), Y (f Xit1) +f (xi-1) — 2f (x:)) ) - (13.21)

e two-state quantum system

The Schroedinger equation for a two level system (for instance a spin-1/2 particle in
a magnetic field) reads

d (G _ (Hu@® Ho@ (G
dr (Cz) N (H21(t) sz(t)) (cz)' (13.22)

13.3 Explicit Forward Euler Method

The simplest method which is often discussed in elementary physics textbooks
approximates the integrand by its value at the lower bound (Fig. 13.1):

Y(tw1) = Y(tn) = f(Y(10), 1) At (13.23)
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Fig. 13.1 Explicit Euler f(t)
method !

The truncation error can be estimated from a Taylor series expansion

Y(t Y(t —AtdY 1 At2d2Y t
(n+l)_ (n)— E(n)"'T?(n)"'
= Atf (Y (1), 1) + O(AF). (13.24)

The explicit Euler method has several serious drawbacks
e low error order

Suppose you want to integrate from the initial time #, to the final time 7y + 7. For a
time step of At you have to perform N = T /At steps. Assuming comparable error
contributions from all steps the global error scales as N At> = O(At). The error gets
smaller as the time step is reduced but it may be necessary to use very small At to
obtain meaningful results.

e loss of orthogonality and normalization

The simple Euler method can produce systematic errors which are very inconvenient
if you want, for instance, to calculate the orbits of a planetary system. This can be
most easily seen from a very simple example. Try to integrate the following equation
of motion (see Example 1.5 on p. 13):

d
d—j = jwz. (13.25)

The exact solution is obviously given by a circular orbit in the complex plane:

2 = 200" (13.26)

|lz| = |zo| = const. (13.27)
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Fig. 13.2 Systematic errors ~—

of the Euler method \

vy dt

Application of the Euler method gives
2tay1) = 2(ty) +iwAL (1) = (1 +iwAN)z(t,) (13.28)

and you find immediately

2] = V1 + 2 A2 2] = (1 + > A2)" 12(1)] (13.29)

which shows that the radius increases continually even for the smallest time step
possible (Fig. 13.2).

The same kind of error appears if you solve the Schroedinger equation for a
particle in an external potential or if you calculate the rotational motion of a rigid
body. For the N-body system it leads to a violation of the conservation of phase space
volume. This can introduce an additional sensitivity of the calculated results to the
initial conditions. Consider a harmonic oscillator with the equation of motion

d (x(n) _ v(t)
dr (v(t)) - (—wzx(t))' (13.30)
Application of the explicit Euler method gives
xt+ A0\ _ [(x@ (1)
(v(t—I—At)) - (v(t))+(—w2x(l‘))At' (13.31)

The change of the phase space volume (Fig. 13.3) is given by the Jacobi determinant

1 A
T —w?Ar 1

B ‘G(X(t + Af), v(t + At))

— 2
O(x (1), v(1)) =1+ WA (13.32)

In this case the phase space volume increases continuously.
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Fig. 13.3 Time evolution of p
the phase space volume

PsHAP |--
Po
X, XGAX X
Fig. 13.4 Implicit backward f(t)
Euler method 1
f(tns1)

p

>t
' Yned

13.4 Implicit Backward Euler Method
Alternatively let us make a step backwards in time

Y (tn) = Y(ta1) = =f (Y (ts1), tng1) At (13.33)
which can be written as (Fig. 13.4)

Y(tar1) = Y(tn) +f (Y (tag1), tag1) AL (13.34)
Taylor series expansion gives

Y(tn) =Y (tay1) — EY(th)At + d—zY(lnH)A—t2 +--- (13.35)

dr dr? 2

which shows that the error order again is O(A¢?). The implicit method is sometimes
used to avoid the inherent instability of the explicit method. For the examples in
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Sect. 13.3 it shows the opposite behavior. The radius of the circular orbit as well
as the phase space volume decrease in time. The gradient at future time has to be
estimated before an implicit step can be performed.

13.5 Improved Euler Methods

The quality of the approximation can be improved significantly by employing the
midpoint rule (Fig. 13.5)

At At
Y(tert) — Y(t) ~ f (Y (r + 7) o+ 7) At (13.36)

The error is smaller by one order of At:

Y(t, Y|t At 1, At At
(n)+f( (‘1—7), n+7)

v+ (Lo + 2 ) ar
oo dr " 2 dr2 "

= Y(t, + A1) + O(AP). (13.37)

The future value Y (r + %) can be obtained by two different approaches:
e predictor-corrector method

Since f(Y(r + %), t, + %) is multiplied with At¢, it is sufficient to use an approxi-
mation with lower error order. Even the explicit Euler step is sufficient. Together the
following algorithm results:

Fig. 13.5 Improved Euler f(t)
method 1
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Fig. 13.6 Improved polygon f(t)
(or Heun) method 1

f(tn+At)

n n+1

predictor step: Y® =vy(,) + %’f(Y(tn), ty)

) s At (13.38)
corrector step: Y (1, + A1) = Y (&) + Atf (Y'Y, 1, + 5).
e averaging (Heun method)

The average of f(Y(t,), t,) and f(Y (¢, + At),t + At) is another approximation to
the midpoint value of comparable quality (Fig. 13.6).
Expansion around ¢, + Ar/2 gives

% (F Y tn), tn) + (Y (tn + AD), t + AD))

At At s
=f (Y (tn+7),tn+7)+O(At ). (13.39)

Inserting the average in (13.36) gives the following algorithm, which is also known

as improved polygon method and corresponds to the trapezoidal rule for the integral
(4.13) or to a combination of explicit and implicit Euler step:

A
Y(t,+ A =Y(,) + Et FY(t), t,) +fY(t, + A1), t + A1) . (13.40)

In the special case of a linear function f (Y (¢),t) = F Y(¢) (for instance rotational
motion or diffusion) this can be solved formally by

At \ 7! At
Yty + Af) = (1 - 7F) (1 n 7F) Y(5,). (13.41)

Numerically it is not necessary to perform the matrix inversion. Instead a linear
system of equations is solved:

At At
(1 — 7F) Y(t, + Ar) = (1 + 7F) Y(z,). (13.42)
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In certain cases the Heun method conserves the norm of the state vector, for instance
if F has only imaginary eigenvalues (as for the 1-dimensional Schroedinger equation,
see p. 526).

In the general case a predictor step has to be made to estimate the state vector at
t, + At before the Heun expression (13.40) can be evaluated:

YP =Y () + Atf(Y (1), t). (13.43)

13.6 Taylor Series Methods

Higher order methods can be obtained from a Taylor series expansion

2
Y(ta + At) = Y1) + AtF(Y (1), 1) + %w b (13.44)

The total time derivative can be expressed as

a ofdy of . .
E_a_YE-FE_ff{—f (13.45)

where the partial derivatives have been abbreviated in the usual way by % = f and

3—7; = f'. Higher derivatives are given by

d*f

2 =P A+ (13.46)
d3 o3 . . .

= oL P P 4 + 3

+ 3 AL+ S A + (13.47)

13.6.1 Nordsieck Predictor-Corrector Method

Nordsieck [151] determines an interpolating polynomial of degree m. As variables
he uses the Oth to mth derivatives? evaluated at the current time ¢, for instance for
m = 5 he uses the variables

2In fact the derivatives of the interpolating polynomial which exist even if higher derivatives of f
do not exist.
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Y()

l—le
90 = 2Y(0)

2

at) = 2Ly
2 dr?
t2 3

b(t) = ?d_ﬁy(t)
P dt

ct) = o d4Y(t)
&

Taylor expansion gives approximate values at r + At

Y+ Ar) =Y (@) + At[g(t) + a(t) + b(t) + c(t) +d () + e(1)]
=YP(t+ At) +e(t) At

g(t+At) = g(t) +2a(t) +3b(t) +4c(t) +5d (1) +6e(t) = gP (t+ AT) +6e(t)
a(t + At) = a(t) + 3b(t) + 6¢(t) + 10d(t) + 15e(t) = dP (t + At) + 15e(1)
b(t + At) = b(t) + 4c(t) + 10d (1) + 20e(t) = bP (t + At) + 20e(1)

c(t+ At) = c(t) + 5d(t) + 15e(t) = P (t + Ar) + 15¢(1)

d(t + At) = d(t) + 6e(t) = dP (t + At) + 6e(t)

where the next term of the Taylor series e(f) = 6, dlé
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(13.48)

(13.49)

(13.50)

(13.51)

(13.52)

(13.53)

(13.54)

(13.55)

(13.56)

(13.57)

(13.58)

(13.59)

‘y (t) has been introduced as

an approximation to the truncation error of the predicted values Y”, ¢”, etc. It can be

estimated from the second equation

[f(P(t 4+ Ap), t + At — ¢ (1 + Ap)] = l

O\I>—*

(13.60)
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This predictor-corrector method turns out to be rather unstable. However, stability
can be achieved by slightly modifying the coefficients of the corrector step. Nordsieck
suggested to use

95
— yPr R
Y(t+ Ar) = YP(r + Ar) + 2885f (13.61)
25
a(t + At) = a’ (t + Ar) + ﬁéf (13.62)
35
b(t + At) = b (t + Ar) + 7—25f (13.63)
c(t+ A1) =@t + Ar) + %5}‘ (13.64)
d(t + At) =dP (t + Ar) + ﬁéf. (13.65)

13.6.2 Gear Predictor-Corrector Methods

Gear [152] designed special methods for molecular dynamics simulations (Chap. 15)
where Newton’s law (13.15) has to be solved numerically. He uses again a truncated
Taylor expansion for the predictor step

AP AP A
r(t+ At) =r(t) + v(t) At + 3(1)7 + a(l)? + a(t)ﬁ + .- (13.66)
L AP AP
V(4 AD = V) +a A +HA0 T +ED T+ (13.67)
. o) AP
A+ A1) = a() +AO A +EO T+ (13.68)
ait+ Aty =a@) +aAt+--- (13.69)
to calculate new coordinates etc. ¥4, v, al ... (Fig.13.7). The difference

between the predicted acceleration and that calculated using the predicted coor-
dinates

a4 =a(rh, .1+ An —al | (13.70)
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Fig. 13.7 (Gear Predictor
Corrector Method) The
difference between predicted
acceleration a” and
acceleration calculated for
the predicted coordinates
a(r’) is used as a measure of
the error to estimate the
correction or
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aP

is then used as a measure of the error to correct the predicted values according to

ryr 1 = I‘Z+1 + Claan-&-l

P
Vol = Vypy + 0202,

(13.71)

(13.72)

The coefficients ¢; were determined to optimize stability and accuracy. For instance

the fourth order Gear corrector reads

At?

i1 = I‘ZH + E5an+1
S5At

Vol = VZH + E(sanﬂ

1
A, = a4, + —0a,,.
+1 + A +1

(13.73)

(13.74)

(13.75)

Gear methods are generally not time reversible and show systematic energy drifts.
A reversible symplectic predictor-corrector method has been presented recently by

Martyna and Tuckerman [153].

13.7 Runge-Kutta Methods

If higher derivatives are not so easily available, they can be approximated by numer-
ical differences. f is evaluated at several trial points and the results are combined to

reproduce the Taylor series as close as possible [154].




302 13 Equations of Motion

13.7.1 Second Order Runge—Kutta Method

Let us begin with two function values. As common in the literature we will denote
the function values as K, K>, . ... From the gradient at time ¢,

Ky =fo =f(Y (), tn) (13.76)
we estimate the state vector at time ¢, + At as

Y, + At) =~ At K. (13.77)
The gradient at time #,, + At is approximately

K, =f(Y(t,) + AtKy, t, + At) (13.78)
which has the Taylor series expansion

Ky =fo + (o +ff) AL+ - - (13.79)
and application of the trapezoidal rule (4.13) gives the 2nd order Runge—Kutta method

Yor1 =Y, + %(Kl + K>) (13.80)
which in fact coincides with the improved Euler or Heun method. Taylor series

expansion shows how the combination of K| and K, leads to an expression of higher
error order:

At .
Yoot = Yot =G +fu+ O +fif) At 4 - )

df, Ar?
— Yn nAt [ e 1381
+ 1 + KT + ( )

13.7.2 Third Order Runge—Kutta Method

The accuracy can be further improved by calculating one additional function value
at mid-time. From (13.76) we estimate the gradient at mid-time by

At At
K=f (Y(t) + 7K1,t+ 7)

AL e AP
=fu+ (n +fn1‘n)7+(fn +1f: +2fnﬁ,)?+~.. (13.82)
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The gradient at time #,, + At is then estimated as

Ky =fY(t,) + At2K; — Ky), t, + At)

. . AL?
:fn +anl +f;;(2K2 — Ky) At +f,17

LKy — KA. (2K, — Kp) A N

2 13.83
+ /1 5 +2f, 5 ( )
Inserting the expansion (13.82) gives the leading terms
h / 12 12 |7 /7 2 Atz
K3 = fu+ (o i) At + Qf, fo + fofir + 1 + 260 + 2f,,)7 +---. (13.84)

Applying Simpson’s rule (4.14) we combine the three gradients to get the 3rd order
Runge—Kutta method

At
Y1 =Y (@) + g(lﬁ +4K> + K3) (13.85)

where the Taylor series

Voo = V) + (66430, + A A

A LA A S+ ‘,lf,[)”At2 +- f)
= Y(t, + A1) + O(ArY) (13.86)

recovers the exact Taylor series (13.44) including terms of order O(AP).

13.7.3 Fourth Order Runge—Kutta Method

The 4th order Runge—Kutta method (RK4) is often used because of its robustness
and accuracy. It uses two different approximations for the midpoint

K, :f(Y(tn)a tn)

K, At
K, =f (Y(fn) + TAt’ h+ 7)

2 2
K, =f(Y(tn) + K3 At, t, + At)

K> At
Ks=f (Y(fn) + AL+ —)
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and Simpson’s rule (4.14) to obtain
At 5
Yopr =Y(@) + i (K1 +2K> +2K5 + Ky) = Y (1, + Ar) + O(Ar).

Expansion of the Taylor series is cumbersome but with the help of an algebra program
one can easily check that the error is of order Az°.

13.8 Quality Control and Adaptive Step Size Control

For practical applications it is necessary to have an estimate for the local error and to
adjust the step size properly. With the Runge Kutta method this can be achieved by
a step doubling procedure. We calculate y,,, first by two steps At and then by one
step 2At. This needs 11 function evaluations as compared to 8 for the smaller step
size only (Fig. 13.8). For the 4th order method we estimate the following errors:

A (Yﬁ?) = 2aAP (13.87)
A (Yﬁé”) = aR A1), (13.88)

The local error can be estimated from

At 2At 5
¥12) — ¥ 29| = 30(al At

Fig. 13.8 Step doubling
with the fourth order
Runge—Kutta method

e

t
th n+] tht2
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Y40 _ y@an

A1) = anr = =22 3

The step size At can now be adjusted to keep the local error within the desired limits.

13.9 Extrapolation Methods

Application of the extrapolation method to calculate the integral f;”“ f()dt produces
very accurate results but can also be time consuming. The famous Gragg-Bulirsch-
Stoer method [2] starts from an explicit midpoint rule with a special starting proce-
dure. The interval Az is divided into a sequence of N sub-steps

h= Al (13.89)
=N .
First a simple Euler step is performed
ug = Y(t,)
ur = ug + hf(uo, t,) (13.90)
and then the midpoint rule is applied repeatedly to obtain
Wiprr =uj—1 +2hf, t,+jh)  j=1,2...N—1. (13.91)

Gragg [155] introduced a smoothing procedure to remove oscillations of the leading
error term by defining

1 1 1
v = Zuj—l + zuj + Zuj+l~ (13.92)

He showed that both approximations (13.91, 13.92) have an asymptotic expansion in
powers of h? and are therefore well suited for an extrapolation method. The modified
midpoint method can be summarized as follows:

Uy = Y(tn)
uy = up + hf(uo, t,)
Upar = w1+ 20y 1y +jR) j=1,2,.. . N —1

1
Y(t, + Ar) =~ 3 (uy +uy—1 +hf(uy, t, + At)). (13.93)
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The number of sub-steps N is increased according to a sequence like

N=2,4,6,8,12,16,24,32,48,64... Nj = 21\/]-,2 Bulirsch-Stoer sequence
(13.94)

or
N=2,4,6,8,10,12... N; =2j Deuflhard sequence.

After each successive N is tried, a polynomial extrapolation is attempted. This extrap-
olation returns both the extrapolated values and an error estimate. If the error is still
too large then N has to be increased further. A more detailed discussion can be found
in [156, 157].

13.10 Linear Multistep Methods

All methods discussed so far evaluated one or more values of the gradient f (Y (¢), t)
only within the interval ¢, - - - 1, + At. If the state vector changes sufficiently smooth
then multistep methods can be applied. Linear multistep methods use a combination
of function values Y, and gradients f,, from several steps

k

Yorr = D (¥a ji1 + Bifu js1 At) + Bofur1 At (13.95)
j=1

where the coefficients «, § are determined such, that a polynomial of certain order
r is integrated exactly. The method is explicit if Sy = 0 and implicit otherwise.
Multistep methods have a small local error and need fewer function evaluations. On
the other hand, they have to be combined with other methods (like Runge—Kutta) to
start and end properly and it can be rather complicated to change the step size during
the calculation. Three families of linear multistep methods are commonly used:
explicit Adams-Bashforth methods, implicit Adams-Moulton methods and backward
differentiation formulas (also known as Gear formulas [158]).

13.10.1 Adams-Bashforth Methods

The explicit Adams-Bashforth method of order r uses the gradients from the last
r — 1 steps (Fig. 13.9) to obtain the polynomial

p(tn) If(Yn, tl‘l)a .. -p(tn—H—l) zf(Yn—r-Ha tn—r-‘rl) (1396)
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Fig. 13.9 Adams-Bashforth f(t)
method '
f(t n+A 1)

and to calculate the approximation

tht1
Yn+1 - Yn %‘/ P(t)d[
Iy

which is generally a linear combination of f;, - - - f,—,+1. For example, the Adams-
Bashforth formulas of order 2, 3, 4 are:

At ;
Yn-H -Y, = 7(3fn _fn—l) + O(At )

At 4
Yn+1 - Yn - 5(23ﬁ1 - 16ﬁz—l + 5fm—2) + O(At )

At
Yopr = Yo = = (55fu = 5%t + 37fo2 = %u-3) + o(AP). (13.97)

13.10.2 Adams-Moulton Methods

The implicit Adams-Moulton method also uses the yet not known value Y,
(Fig. 13.10) to obtain the polynomial

Pltnst) = fosts - P(taers2) = forsa. (13.98)
The corresponding Adams-Moulton formulas of order 2 to 4 are:
At 3
Yn+1 - Yn - ?(ﬁz-&-l +.ﬁ1) + O(At‘)

At
Yot =Yy = 35 Sfost + 8 —fo) + o(ArY (13.99)

At
Yo =Y, = ﬂ(9fn+1 + 190 = a1 +fu2) + O(AP). (13.100)
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Fig. 13.10 Adams-Moulton
method
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13.10.3 Backward Differentiation (Gear) Methods

Gear methods [158] are implicit and usually combined with a modified Newton
method. They make use of previous function values Y, ¥,_; ... and the gradient
Jfut1 at time ¢ + At. Only methods of order r < 6 are stable and useful. The general

formula (13.95) is

,
Yop1 = Z%‘Yn—ﬁl + Bofur1 At

j=1
For r = 1 this becomes
Y1 = oYy, + Bofi At
and all linear polynomials

dp

p=po+pi1t—1t,), priabd

are integrated exactly if
po +p1At = aipo + Pop
which is the case for

ap =1, [y = At.

Hence the first order Gear method is

Y1 = Yo + fun1 At + O(AP)

(13.101)

(13.102)

(13.103)

(13.104)

(13.105)

(13.106)
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which coincides with the implicit Euler method. The higher order stable Gear meth-
ods are given by

4 1 2
r=2: Y= §Y,, - gYH + gfmm +0(Ar%) (13.107)
3: Y, 181/ 2 Y1+ 2 Yoo+ 6f At 4 O(Ar*) (13.108)
r=3: ntl = T = T L1 T T L2 T T )
AR TR R T
=4: Y, —48Y 36Y +16Y 3 Y, +12f At + O(AP)
r = . n+1 — 25 n 25 n—1 25 n—2 25 n—3 25 n+1
(13.109)
sy 300 300 200 75
r=>J: n+l = T554n — 755 4n— Ao dtn-2 — 54—
T 37 137 T3y 3
+ 12 You + 60f At + 0(A1%) (13.110)
137 4T 3! '
6 v 120Y 150Y N 400Y 75Y
r=0: n = -5 in— -5 tn— T in-2 = T~ 1Ip—
AT 49 "M 47T 490
+ 24Y 10 Y5+ 20f At + 0(At7) (13.111)
49 n—4 147 n—>5 49 n+1 . .

This class of algorithms is useful also for stiff problems (differential equations with
strongly varying eigenvalues).

13.10.4 Predictor-Corrector Methods

The Adams-Bashforth—-Moulton method combines the explicit method as a predictor
step to calculate an estimate +1 With a corrector step using the implicit method of
same order. The general class of linear multistep predictor corrector methods [159]
uses a predictor step

k

o =3 (aj"’ Yo i1 + ﬂj(p)ﬁq_j_‘_lAt) (13.112)
=1

which is corrected using the formula

k

Y = D7 (o Yarjir + %1 A1) + Gof (V2 1) At (13.113)
j=1
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and further iterations

YO = v = B [FOTY ) = O e | A m= 1M =
(13.114)
Vo1 =Y, Vo = f X0 1000). (13.115)

The coefficients «, 3 have to be determined to optimize accuracy and stability.

13.11 Verlet Methods

For classical molecular dynamics simulations it is necessary to calculate very long
trajectories. Here a family of symplectic methods often is used which conserve the
phase space volume [160-165]. The equations of motion of a classical interacting
N-body system are

where the force acting on atom i can be calculated once a specific force field is
chosen. Let us write these equations as a system of first order differential equations

5([ N /]
(V,») = (a,-) (13.117)

where x(¢) and v(¢) are functions of time and the forces ma(x(t)) are functions of
the time dependent coordinates.

13.11.1 Liouville Equation
We rewrite (13.117) as

(f) =£(f) (13.118)

where the Liouville operator £ acts on the vector containing all coordinates and
velocities:

X 0 0 X
E(V) (V&-l—aa) ( ) (13.119)
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The Liouville equation (13.118) can be formally solved by

X(D\ _ e (x(0)
(v(t)) =e (V(O) . (13.120)
For a better understanding let us evaluate the first members of the Taylor series of
the exponential:

£ ()V() N (Vc‘% +aa%) (3) - (Z) (13.121)
X 0 o v a
L2 (v) - (vg +aa) (a(x)) - (Va_oa) (13.122)

0 0 a vZa
XY= (vZ “ = ) x< . 13.123
()= Caroi) () = (aga 100 20) (13129
But since
d 0
Ea(x(t)) = V&a (13.124)
dza(x(t))—d Vaa —aaa—i-vva aa (13.125)
dr? Cdr\Uox ) Tox Ox Ox '
we recover
1 1 X X+ vi+srfa+4 a4
<1+t£+—t2£,2+—z3ﬁ3+---)( )= L .
2 6 v v+ar+ yra+ ra+ -
(13.126)

13.11.2 Split Operator Approximation

We introduce a small time step Az = #/N and write

N

el = (547 (13.127)
For the small time step At the split-operator approximation can be used which approx-
imately factorizes the exponential operator. For example, write the Liouville operator
as the sum of two terms
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7] 7]
ﬁA:V— £B=a—

ox ov

and make the approximation
A = A (13.128)

Each of the two factors simply shifts positions or velocities

caoa (XY [(X+ VAL ceac [ XY X
¢ (v)_( v ) ¢ (V)_(V+3At) (13.129)

since these two steps correspond to either motion with constant velocities or constant
coordinates and forces.

13.11.3 Position Verlet Method

Often the following approximation is used which is symmetrical in time

e[,Al — eﬁAAt/ZeﬁgAteﬁAAt/Z + cen (13130)

The corresponding algorithm is the so called position Verlet method (Fig. 13.11):

At
X412 =xn+vn7 (13.131)
Vol = Vo + ap1p Al = V(1, + Af) + 0(At3) (13.132)
At Vi + Vatl 3

Xt = Xuwp F Vit o = Xk = A= X+ AD+O(AP). (13.133)
Fig. 13.11 (Position Verlet A
method) The exact
integration path is Vot

approximated by two
half-steps with constant
velocities and one step with
constant coordinates
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Fig. 13.12 (Velocity Verlet v
method) The exact

integration path is \Y L
approximated by two
half-steps with constant
coordinates and one step
with constant velocities

v 1
n
I |
Xn Xn+1 X
13.11.4 Velocity Verlet Method
If we exchange operators A and B we have
eﬁ,At — eEBAt/ZeﬁAAteﬁgﬂt/Z 4. (13134)
which produces the velocity Verlet algorithm (Fig. 13.12):
At
Vat1p = Vy + an7 (13.135)

At?
Xnt1 = X+ Vopip At = Xn—i-vnAt—i—anT = X(t, + A1) + O(AP) (13.136)

At a, + a,
Vol = Vapip +App1—— =V + n—H—lAt =v(t, + A + O(At3)

2 2
(13.137)

13.11.5 Stoermer-Verlet Method

The velocity Verlet method is equivalent to Stoermer’s version [166] of the Verlet
method which is a two step method given by

Xpi1 = 2X, — X,_1 + 2, A (13.138)

v, = L= Xl (13.139)
QA1

To show the equivalence we add two consecutive position vectors

Xpt2 + Xpt1 = 2Xn-‘,—l + 2Xn — Xy —Xp—1 + (an+l + an)Atz (13140)
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which simplifies to

Xnt2 — Xn — (Xpp1 — Xp) = (@py1 +2,) AL (13.141)
This can be expressed as the difference of two consecutive velocities:

2(Vpg1 — Vi) = (g1 + @) At (13.142)

Now we substitute

Xp—1 = Xpp1 — 2V, At (13.143)
to get
Xpt1 = 2%, — Xpp1 + 2V Al + 2, AL (13.144)

which simplifies to
a,  ,
Xyt 1 =x,,+vnAt+EAt . (13.145)

Thus the equations of the velocity Verlet algorithm have been recovered. However,
since the Verlet method is a 2-step method, the choice of initial values is important.
The Stoermer-Verlet method starts from two coordinate sets xg, x;. The first step is

Xy = 2X1 — Xg + a1 A (13.146)
X2 —Xp X1 —Xp a 5

= = — At 13.147

i 2At At + 2 ( )

The velocity Verlet method, on the other hand, starts from one set of coordinates and
velocities x;, v;. Here the first step is
Af?
X> = X1 +V1At+a17 (13.148)

a; +a

Vo =V + At. (13.149)
The two methods give the same resulting trajectory if we choose

Xo = X| — V| A + %Aﬂ. (13.150)

If, on the other hand, x¢ is known with higher precision, the local error order of
Stoermer’s algorithm changes as can be seen from addition of the two Taylor series
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Xty + A1) = X, + v, Al + %”Atz n 3—6”Az3 . (13.151)
a, , A 4
x(t, — At) =X,1—V,,At+?At — EAt + - (13.152)

which gives
X(t, + A1) = 2X(1,) — X(1, — Af) + a,A> + O(Ar) (13.153)

x(t, + At) — x(t, — Ar)
2At

=v, + 0(AP). (13.154)

13.11.6 Error Accumulation for the Stoermer-Verlet Method

Equation (13.153) gives only the local error of one single step. Assume the start
values x( and x; are exact. The next value x, has an error with the leading term
Ax; = aAt*. If the trajectory is sufficiently smooth and the time step not too large
the coefficient o will vary only slowly and the error of the next few iterations is given
by

Ax3 = 2Ax; — Ax; = 2aAr*
Axy = 2Ax3 — Axp = 3aArt

AXyp1 = naAr*. (13.155)

This shows that the effective error order of the Stoermer-Verlet method is only o(AP)
similar to the velocity Verlet method.

13.11.7 Beeman’s Method

Beeman and Schofield [167, 168] introduced a method which is very similar to the
Stoermer-Verlet method but calculates the velocities with higher precision. This is
important if, for instance, the kinetic energy has to be calculated. Starting from the
Taylor series

wvaar a0 pa AT L5 A0 (13.156)
X, = Xp Va a,—F a;,— a,—— s .
! 2 6 24
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the derivative of the acceleration is approximated by a backward difference

vt 4a, A BB AT )
X5 =Xy Vu a,— _—
o 2 At 6
4an — ap— 2 4
= X, + Vo A+ 2L AR 1 O(Ar). (13.157)

This equation can be used as an explicit step to update the coordinates or as a predictor
step in combination with the implicit corrector step

A a,. —a, AP

il =X+ VAL Fa, 4 LTI T oA
Xpsl = X+ Va Al 2, ==+ Z =+ 0(Ar)
n 2n
= X, + V, At + %Aﬂ + 0(ArY (13.158)

which can be applied repeatedly (usually two iterations are sufficient). Similarly, the
Taylor series of the velocity is approximated by

. A2 AP
Vn+1=Vn+anAt+a,,T+a,,?+-~-
2

Fagar+ (2™ 4 oan) AC 4
=v, a, - - .
At 2

v, + L;a”m +0(AP). (13.159)

Inserting the velocity from (13.158) we obtain the corrector step for the velocity

Xn+1 — X; an-‘,—l + 2an an-&—l + a, 3
= — At At 4+ O(At
Vit1 At 6 + ) + ( )
n - An 2an a,
= Xl T X St H AL oA, (13.160)

At 6

In combination with (13.157) this can be replaced by

4an —a, 2fan-k—l + a,

Vapl = Vot — Lar+ At +0(Ar)
2a,.1 + 52, — a,_
—v, a+1+6a Wl A 4 047 (13.161)

Together, (13.157) and (13.161) provide an explicit method which is usually
understood as Beeman’s method. Inserting the velocity (13.160) from the previous
step

Xp — Xp—1 2an +a, 3
= At + O(At 13.162
A4 YR 7 + 0(Ar) ( )
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into (13.157) gives
Xpp1 = 2X, — X,_1 + 2,A% + O(Ar*) (13.163)

which coincides with the Stoermer-Verlet method (13.138). We conclude that Bee-
man’s method should produce the same trajectory as the Stoermer-Verlet method if
numerical errors can be neglected and comparable initial values are used. In fact, the
Stoermer-Verlet method may suffer from numerical extinction and Beeman’s method
provides a numerically more favorable alternative.

13.11.8 The Leapfrog Method

Closely related to the Verlet methods is the so called leapfrog method [165]. It uses
the simple decomposition

eﬁAt ~ ECAAteckAt (13164)

butintroduces two different time grids for coordinates and velocities which are shifted
by At/2 (Fig.13.13).
The leapfrog algorithm is given by

Vot = Vpoip + a8, At (13.165)
Xp+1 = X, + Vn+1/2Al. (13.166)

Due to the shifted arguments the order of the method is increased as can be seen
from the Taylor series:

X(tn) + (V(tn) + %a(tn) + - ) At = X(tn + At) + O(Ats) (13167)

Fig. 13.13 (Leapfrog Vv [ -
method) The exact '

integration path is
approximated by one step
with constant coordinates
and one step with constant Viet2 T
velocities. Two different
grids are used for
coordinates and velocities n
which are shifted by At/2
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At At ;
v (t,, + 7) —v (t,, - 7) = a(t,) At + O(AP). (13.168)

One disadvantage of the leapfrog method is that some additional effort is necessary
if the velocities are needed. The simple expression

(A 4 :
v(t,) = 5 (V (fn ) ) +v (tn + 3 )) + 0(Ar) (13.169)

is of lower error order than (13.168).

Problems

Problem 13.1 Circular Orbits

In this computer experiment we consider a mass point moving in a central field. The
equation of motion can be written as the following system of first order equations:

i 0 0 10 X

. 0 0 01

Yyl _ y

Uy N (x2+,1\'2)3/2 0 00 v | (13.170)
- 1

vy 0 T 00 v

For initial values

X 1
vyx — 8 (13.171)
vy 1
the exact solution is given by
X =cost y=sint. (13.172)

The following methods are used to calculate the position x(¢), y(¢) and the energy

1

NEE

1
Eior = Ejin +Epot = E(v)% + U)Z) - (13.173)

e The explicit Euler method (13.3)
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x(tl‘lJrl) = x(ty) + v (tn) At
y(trH-l) = y(tn) + Uy(tn)At

Ux(tag1) = vx(t) — 1;((;:))3 At

vy(thrl) = vy(tn) - Ig((,t:))s At.

e The 2nd order Runge—Kutta method (13.7.1)

which consists of the predictor step

At
x(tn + A[/Z) = x(tn) + 7Ux(tn)

At
y(t, + At/z) = y(t) + TUy(tn)

A At x(tn)

Ux(tn t/2) = Ux(tn) — _2 (t )3
= A n

B+ 45/2) =0y (6) zt —1:((:))3

and the corrector step

x(tn-H) = x(tn) + At v (2, + AI/Z)

Y(tar1) = y(t) + At vy (1, + At/2)
x(t, + At/2)
R3(t, + At/2)

y(t, + At/2)
R3(t, + At)2)’

Ux(tn+l) = Ux(tn) — At

Uy(tn-'rl) = vy(tn) — At

e The fourth order Runge—Kutta method (13.7.3)
e The Verlet method (13.11.5)

X(tn1) = X(tn) + (x(tn) — x(ta-1)) — At ;3(2:)

V(tutr1) = y(t) + O t,) — y(ta—1)) — At;;(z:)

0t,) = X(tar1) = x(tam1) _ X(t) = X(tm) AL X(ty)
e 2At - At ) RS(l‘n)
() = Y1) — y(ta1) _ V) = y(tam1) At y(t)

2AL At 2 Rty
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(13.174)

(13.175)

(13.176)

(13.177)

(13.178)

(13.179)

(13.180)

(13.181)

(13.182)

(13.183)

(13.184)

(13.185)

(13.186)
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To start the Verlet method we need additional coordinates at time — At which can be
chosen from the exact solution or from the approximation

A x(ty)
t_1) = x(tg) — At v (tg) — — 13.187
x(1-1) = x(to) ve(to) — = R (o) ( )
AP y(19)
t_1) = y(ty) — At vy(tp) — — . 13.188
y(t-1) = y(t0) vy(to) = — R (o) ( )
e The leapfrog method (13.11.8)
X(tng1) = x(tn) + Vi (tngrp) At (13.189)
Vi) = ¥(tn) + vy (1) At (13.190)
x(2n)
U (Bngrn) = Ux(tporp) — R} (13.191)
fusys) = vy(t, DY 13.192
Vy(tag1n) = Vy(tarpy) — m (13. )
where the velocity at time ¢, is calculated from
At x(twt1)
x(In) = Ux(lnt1p2) — — 13.193
0lla) = ) = 5 S (13.193)
At y(tn-H)
t,) = v,(t, - — . 13.194
Uy( ) U)( +1/2) D) R3(fn+1) ( )

To start the leapfrog method we need the velocity at time 7_i;, which can be taken
from the exact solution or from

. At x(1y)
Ve (t-1p) = (o) — 7R3(t0) (13.195)
A
Uy(l‘,l/z) = Uy(l‘o) — %;3(2(;3) . (13.196)

Compare the conservation of energy for the different methods as a function of the
time step At. Study the influence of the initial values for leapfrog and Verlet methods.

Problem 13.2 N-body System

In this computer experiment we simulate the motion of three mass points under the
influence of gravity. Initial coordinates and velocities as well as the masses can be
varied. The equations of motion are solved with the 4th order Runge—Kutta method
with quality control for different step sizes. The local integration error is estimated
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using the step doubling method. Try to simulate a planet with a moon moving round
asun!

Problem 13.3 Adams-Bashforth Method

In this computer experiment we simulate a circular orbit with the Adams-Bashforth
method of order 2. .. 7. The absolute error at time T

A(T) = |x(T) — cos(T)| + y(t) — sin(T) | + |ve(T) + sin(T) | + |vy(T) — cos(T)]
(13.197)

is shown as a function of the time step At in a log-log plot. From the slope

_ d(log;y(A))

_ 13.198
* = dlog (A1) (13.198)

the leading error order s can be determined. For very small step sizes rounding errors
become dominating which leads to an increase A ~ (Af)~!.

Determine maximum precision and optimal step size for different orders of the
method. Compare with the explicit Euler method.




Part 11
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and Quantum Systems



Chapter 14
Rotational Motion

An asymmetric top under the influence of time dependent external forces is a rather
complicated subject in mechanics. Efficient methods to describe the rotational motion
are important as well in astrophysics as in molecular physics. The orientation of a
rigid body relative to the laboratory system can be described by a 3 x 3 matrix.
Instead of solving nine equations for all its components, the rotation matrix can
be parametrized by the four real components of a quaternion. Euler angles use the
minimum necessary number of three parameters but have numerical disadvantages.
Care has to be taken to conserve the orthogonality of the rotation matrix. Omelyan’s
implicit quaternion method is very efficient and conserves orthogonality exactly.
In computer experiments we compare different explicit and implicit methods for a
free rotor, we simulate a rotor in an external field and the collision of two rotating
molecules.

14.1 Transformation to a Body Fixed Coordinate System

Let us define a rigid body as a set of mass points m; with fixed relative orientation
(described by distances and angles).

The position of m; in the laboratory coordinate system CS will be denoted by r;.
The position of the center of mass (COM) of the rigid body is

1
R=— m;xr; 14.1
>imi Zl: ( )
and the position of m; within the COM coordinate system CS, (Fig. 14.1) is p;:

ri=R+p,. (14.2)

Let us define a body fixed coordinate system CS,,, where the position py, of m; is
time independent % pir = 0. p; and p;;, are connected by a linear vector function
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Fig. 14.1 (Coordinate
systems) Three coordinate
systems will be used: The
laboratory system CS, the
center of mass system CS,
and the body fixed system
CSep

pi = Apy, (14.3)
where A is a 3 x 3 matrix

app apz a3
A= | ayaxnax; |. (14.4)
as) asp asj

14.2 Properties of the Rotation Matrix

Rotation conserves the length of p ':
p'p=Ap) (Ap) =p"A"Ap. (14.5)

Consider the matrix

M=ATA-1 (14.6)
for which
p'Mp=0 (14.7)
1
holds for all vectors p. Let us choose the unit vector in x-direction: p = | 0 |. Then
we have ’

'pT p denotes the scalar product of two vectors whereas pp” is the outer or matrix product.
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My My M3 1
0=(100) [ My Mo My | [ 0 ) =my,. (14.8)
M3, M3, M3; 0

Similarly by choosing a unit vector in y or z direction we find M, = M33 = 0.
1

Now choose p = | 1
0

My My, M3
0= (110)( My My M3 | |1
M3 M3 M33 0

My + My
=(110)| My + M | =My +Mxn+ M+ Moy (14.9)
M3 4+ M3,
1
Since the diagonal elements vanish we have M|, = —My;. Withp = | 0 |, p =
1

0
1 | we find M3 = —M3; and M3 = —M3;, hence M is skew symmetric and has
1

three independent components

0 My Mpz
M=-M=|-M, 0 Mxy]. (14.10)
—M3 —My; 0O

Inserting (14.6) we have
ATA-DH=-ATA- 1" =—-@ATaA- 1) (14.11)

which shows that ATA = 1 or equivalently A” = A~!. Hence (det(4))* = 1 and A
is an orthogonal matrix. For a pure rotation without reflection only det(A) = +1 is
possible.

From

ri=R+Apy, (14.12)

we calculate the velocity

dr; dR n dA
dr — dr  dr

dpib
. AR 14.13
Pib dr ( )
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but since py, is constant by definition, the last summand vanishes
Fi=R+A4Ap, =R+AA"!p, (14.14)

and in the center of mass system we have

d :
P =AA"'p; = Wp, (14.15)

with the matrix

W =AA"". (14.16)

14.3 Properties of W, Connection with the Vector
of Angular Velocity

Since rotation does not change the length of p;, we have

d d
0=—|p|> > 0=p,—p, = p,(Wp, 14.17
dtl il tdr! i€ i) ( )

or in matrix notation
0=p/ Wp,. (14.18)

This holds for arbitrary p,. Hence W is skew symmetric and has three independent
components

0 W Wi
W=|-w, 0 Wy]|. (14.19)
—Wi3 =W 0

Now consider an infinitesimal rotation by the angle dy (Fig. 14.2).

Fig. 14.2 Infinitesimal 0 +dp
rotation
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Then we have (the index i is suppressed)

dp 0 Wp Wg p1 Wiap2 + Wisps
dp = Edt = -Wn 0 Wy p2 | dt = | —Wip1 + Wazps | dt
—Wi3 =Wy 0 3 —Wizpr — Wazps
(14.20)

which can be written as a cross product:

dp=dp xp (14.21)
with
—Wasdt
de = Wisdt . (14.22)
—Wiodt

But this can be expressed in terms of the angular velocity w as
dp = wdt (14.23)

and finally we have

w1 0 —w3 w
dep=wdt=|w |dt W=| w3 0 —w; (14.24)
w3 —Wy Wi 0

and the more common form of the equation of motion

d
ap: Wp=wxp. (14.25)

Example:Rotation Around the z-axis

For constant angular velocity w the equation of motion

d
—p=W 14.26
a’ p ( )

has the formal solution
p=¢e"" p0) =A@ p(0). (14.27)

The angular velocity vector for rotation around the z-axis is
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0
w=1|0 (14.28)
w3
and
0 —w30
W=fw; 0 0]. (14.29)
0 0 0

Higher powers of W can be easily calculated since

—w% 00
W= 0 —w?0 (14.30)
0 0 0
0 —W30
WP=—wilws 0 0 (14.31)
0 00

etc., and the rotation matrix is obtained from the Taylor series

1 1
Ay =eV = 1+Wz+§W2t2+6W3z3+---

wi? 0 0 | W2 0 —ws3r 0 w22
=1+( 0 w30 (—2+234+-~-)+ wit 0 0 (1—36+--~)
0 00 0 00

cos(wszt) — sin(wst)
= | sin(ws?) cos(wst) . (14.32)
1

14.4 Transformation Properties of the Angular Velocity

Now imagine we are sitting on the rigid body and observe a mass point moving
outside. Its position in the laboratory system is rj. In the body fixed system we
observe it at

pi,=A"'(r —R) (14.33)

and its velocity in the body fixed system is
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-1

dt

p=A""0 -R) + (r —R).

The time derivative of the inverse matrix follows from

-1
A

0= d A'A=A""A+ aa
T dr - dr
dA*l

— —A71M71 — _A71W
dt

and hence

dA-!

0 (ri —R) = —A"'W(r, — R).
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(14.34)

(14.35)

(14.36)

(14.37)

Now we rewrite this using the angular velocity as it is observed in the body fixed

system

—A7'W(r —R) = WA (r; —R) = —W,,p;, = —wy, X py,

where W transforms as like a rank—2 tensor

W, = A"'WA.

(14.38)

(14.39)

From this equation the transformation properties of w can be derived. We consider
only rotation around one axis explicitly, since a general rotation matrix can always
be written as a product of three rotations around different axes. For instance, rotation

around the z-axis gives:

0 —wp wp
W= ws 0 —wpy | =
—wpy wpr 0O

cosp sing 0 0 —ws wy cosp —sinp 0
—sing cosp 0 wiy 0 —w sing cose 0O
0 0 1 —Wy Wi 0 0
0 —Ww3
= w3 0 —(w €cos 4+ wy sin )

—(wy cos ¢ — wy sin ) wj cos ¢ + wy Sin @

which shows that

Wy €COS (p — w; Sin

(14.40)
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Wip cosp sing 0 w1
w | = —sinpcosp0 | [w | =47w (14.41)
W3p 0 0 1 w3

i.e. w transforms like a vector under rotations. However, there is a subtle difference
considering general coordinate transformations involving reflections. For example,
under reflection at the xy-plane W is transformed according to

100 0 —w3 wy 100
Wp,=({010 w3 0 —w 01 0
00 -1 —wy w; O 00 -1
0 —W3 —wWy
=lws 0 w; (14.42)
Wy —W1 0

and the transformed angular velocity vector is

Wip 10 0 w1
wWap = — 01 0 W . (1443)
wW3p 00 -1 w3

This is characteristic of a so called axial or pseudo-vector. Under a general coordinate
transformation it transforms as

wp = det(A)Aw. (14.44)

14.5 Momentum and Angular Momentum

The total momentum is

P= zm,-t,- = Zm,R = MR (14.45)

since by definition we have >_.m;p; = 0.
The total angular momentum can be decomposed into the contribution of the
center of mass motion and the contribution relative to the center of mass

L= mr; x i =MR xR+ > mip; x p; = Leow + Lin- (14.46)

L

The second contribution is
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Liw = D _mip; x (w x p) = > mi (wp} — p(pw)). (14.47)

This is a linear vector function of w, which can be expressed simpler by introducing
the tensor of inertia

=Y mp}1—mpp] (14.48)

or component-wise

Im,n = Zmipizdm,n — M;iPimPin (1449)

1

as

Liy = lw. (14.50)

14.6 Equations of Motion of a Rigid Body

Let F; be an external force acting on m;. Then the equation of motion for the center
of mass is

dz ..
e Zmiri = MR = ZFi =F,,. (14.51)

If there is no total external force F,,,, the center of mass moves with constant velocity
R=Ry+ V(I —1). (14.52)

The time derivative of the angular momentum equals the total external torque
iL = i mir; X ¥; = mir; X ¥; = r; x F;, = N; = Neyt (14.53)
dr dr < - - -
l ] L 1

which can be decomposed into

New =R x Foy + > p; x Fi. (14.54)

With the decomposition of the angular momentum
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d d d
‘r="L ‘L.,
dr dp “com + gy

we have two separate equations for the two contributions:

d d . ..
ELCOMZEMRXR=MRXR=RXFMZ

d
_Lin — ;X Fi = Nex — R x Fex = N[n
e ™ Zi p ' t t

14.7 Moments of Inertia

The angular momentum (14.50) is
Lgoy = lw = AA'IAA ™ 'w = AlLw,

where the tensor of inertia in the body fixed system is

L=A""IA=A"" (Z mip; p; — m,-pip,-T)A

1

= ZmiATpiTp[A - m,-ATpipiTA
i

2 T
= E mi Py, — MiPipPjp-
i

Rotational Motion

(14.55)

(14.56)

(14.57)

(14.58)

(14.59)

Since I, does not depend on time (by definition of the body fixed system) we will
use the principal axes of I, as the axes of the body fixed system. Then 7, takes the

simple form

with the principle moments of inertia /; 5 3.

14.8 Equations of Motion for a Rotor

The following equations describe pure rotation of a rigid body:

d
—A=WA =AW,
dt

(14.60)

(14.61)



14.8 Equations of Motion for a Rotor 335

d
—L = Ni 14.62
3L : ( )
0 —W3 Wy
W= w3 0 —W1 Wij = —E,'jkwk (1463)
—Wy Wi 0
Ly = ALy p = lw = Alwy, (14.64)
;"o oo
wp =1 "Liwp=| 0 I;' 0 |Liyp» w=Aw, (14.65)
0 0 I
I, = const. (14.66)

14.9 Explicit Methods

Equation (14.61) for the rotation matrix and (14.62) for the angular momentum have
to be solved by a suitable algorithm. The simplest integrator is the explicit Euler
method (Fig. 14.3) [169]:

error of energy and determinant

time step At

Fig. 14.3 (Global error of the explicit methods) The equations of a free rotor (14.8) are solved
using the explicit first order (full curves) and second order (dashed curves) method. The deviations
| det(A) — 1| (diamonds) and |Ey;,, — Eyin (0)] (circles) at t=10 are shown as a function of the time
step At. Full circles show the energy deviation of the first order method with reorthogonalization.
The principal moments of inertia are I, = diag(l,2,3) and the initial angular momentum is
L = (1,1, 1). See also Problem 14.1
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At + At) = A@) + AW, (1) At + O(Atz) (14.67)

Ly (t + A1) = Lin (1) + Nip (1) At + O(AP). (14.68)

Expanding the Taylor series of A(f) to second order we have the second order approx-
imation (Fig. 14.3)

A(t + At) = A(t) + AW, (1) At + % (AW (@) + A Wy(1)) A + O(AF).
(14.69)

A corresponding second order expression for the angular momentum involves the
time derivative of the forces and is usually not practicable.

The time derivative of W can be expressed via the time derivative of the angular
velocity which can be calculated as follows:

d d d

—wp=— (7AW =L =AY ) L + I, 'A7 NG, =

4 dt(b ) =1, (dt rh '

=1, (~A""W) Loy + I, '"A"'Nie = =1, ' WL p + I, 'Ning . (14.70)

Alternatively, in the laboratory system

d d

oY= 5(Awb) = WAwy, — AL 'A™' WLy, + AL ANy,

= AL 'A(Nip — Wiy) (14.71)
where the first summand vanishes due to

WAL«J;, = Awab = Awb X Wy = 0. (1472)

Substituting the angular momentum we have

d
Y= L "Ny — I Wy lpwy, (14.73)

which reads in components:

Wp1 L' Ny
W | = [ Ly'Nin
wp3 I Nys
I 0 —wps wp Ipiwp
];1 wp3 0 —wp Iypwp (14.74)

~1
I; —wpy wpr 0 Ip3wp3
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Evaluation of the product gives a set of equations which are well known as Euler’s
equations:

Ip—Ip3

wpr = PR wpwps + —1

. Iz =1y

wp = B “wb3wb1 + E

. Iy 1;

oy = 1y 4 (14.75)

Im

14.10 Loss of Orthogonality

The simple methods above do not conserve the orthogonality of A. This is an effect
of higher order but the error can accumulate quickly. Consider the determinant of A.
For the simple explicit Euler scheme we have

det(A + AA) = det(A + WAA?) = detA det(l + WAr) = detA (1 4+ w?Ar?).
(14.76)

The error is of order A#2, but the determinant will continuously increase, i.e. the
rigid body will explode. For the second order integrator we find

Ar? .
det(A + AA) = det (A + WAAt + —(W2A + WA))
=detA det (1 + WAt + (W2 + W)) (14.77)

This can be simplified to give
det(A + AA) = detA (1 + WwAL +--+). (14.78)

The second order method behaves somewhat better since the product of angular
velocity and acceleration can change in time. To assure that A remains a rotation
matrix we must introduce constraints or reorthogonalize A at least after some steps
(for instance every time when | det(A) — 1| gets larger than a certain threshold). The
following method with a symmetric correction matrix is a very useful alternative
[170]. The non-singular square matrix A can be decomposed into the product of an
orthonormal matrix A and a positive semi-definite matrix S

A=AS (14.79)
with the positive definite square root of the symmetric matrix A7A

S = (ATA) (14.80)
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and

A=AS""=AATA)~" (14.81)
which is orthonormal as can be seen from

ATA = (STHTATAS ' = 57182871 = 1. (14.82)

Since the deviation of A from orthogonality is small, we make the approximations

S=1+s (14.83)
ATA=8>~1+2s (14.84)
ATA -1
s~ (14.85)
2
. 1—ATA
STlal—sa~1+ I 4. (14.86)

which can be easily evaluated.

14.11 Implicit Method

The quality of the method can be significantly improved by taking the time derivative
at midstep (Fig. 14.4) (13.5):

Fig. 14.4 (Global error of
the implicit method) The
equations of a free rotor
(14.8) are solved using the
implicit method. The
deviations | det(A) — 1|
(diamonds) and

|Ekin — Ekin(0)] (circles) at
t = 10 are shown as a
function of the time step Ar.
Initial conditions as in

Fig. 14.3. See also
Problem 14.1

error of energy and determinant

20 E N | PR | N | N
10 107 10° 10 10
time step At
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At At
A(t+At)=A(t)+A(t+7)W(t+7) At +--- (14.87)
At
Linl(t + At) = Linl(t) + Nint (t + 7) Af 4. (1488)

Taylor series expansion gives

Alt At Wit At At
( +7) ( +?)
. Ar? . AP 3
=A)W() At +A(t)W(z)T —i—A(t)W(t)T + O(Ar) (14.89)

2
=AW At + AOW (1) + A(t)W(t))ATt +0(AP) (14.90)

which has the same error order as the explicit second order method. The matrix
At + %’) at mid-time can be approximated by

%(A(t) + A(t + Ar))

At | AP At At )
—Alr+ 5 )+ A e+ T )+ =a(r+ 5 ) vowary  aaon

which does not change the error order of the implicit integrator which now becomes
1 At 3
A(t+ A = A1) + > A@) +AC+AD)) W Lt + 5 At + O(Ar). (14.92)

This equation can be formally solved by

At + A) =A@ (1 AtWt At 1 AtWt At 71—AtT At
(t+ Ar) = (>(+7 (+7))(—7 (+7)) - <>b(7).

(14.93)

Alternatively, using angular velocities in the laboratory system we have the similar
expression

A Aty = |1 AtW AT 1 AIW At At)y=T At A
(t+ At) = |: —7 (t+7):| |: +7 <l+7)i| 1) = (7) ®).
(14.94)

The angular velocities at midtime can be calculated with sufficient accuracy from

At At . 2
w (t + 7) =W(@) + 7W(r) + O(Ar9). (14.95)
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With the help of an algebra program we easily prove that

At At ZAL?
%%L%TW)=®%L~?W)=1+w4 (14.96)

and therefore the determinant of the rotation matrix is conserved. The necessary
matrix inversion can be easily done:

1 AtW B
2

1AL 2 2

1+ == —w35 Fwiw - w5+ wiws A 1
— At Ar? wi AP At AP
= w35 + wiwr = 1+ =2 —W1 5 + wWhwi=— 5.

2 4 T 2 TS | A

At At At At w3 At 4

—wWr S twiwsTs Wiy waws o 1+ =5
(14.97)

The matrix product is explicitly

At Ar 17!
Tb = |:1 + —Wb] |:l - —Wbi|

1+ WAZQ —wp3 At + wblwbz%’z wp At + wblwwATtZ
= | wndr+ WblwbzAth 1+ MM —wp At + wbzwb3%’z
—wp At + wblw;ﬁ%ﬂ wp1 At + WbZWbSATZZ 1+ —Wh *jﬁzﬂ‘wgs A2
1

X —. (14.98)
1+ wlz,AT’z

With the help of an algebra program it can be proved that this matrix is even orthog-
onal

T/'T, =1 (14.99)

and hence the orthonormality of A is conserved. The approximation for the angular
momentum

At
Linl(t) + Nint (t + 7) At

. Ar?
= L (1) + N (1) At + Nint(t)T + -+ = Lin(t + Af) + O(AF)  (14.100)
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can be used in an implicit way

Nm t At N,’n t
Lo (t + Af) = Ly (1) + N+ 2)+ ‘D At 4 0car), (14.101)

Alternatively Euler’s equations can be used in the form [171, 172]

At At Iy — 1, N,
wprl\t+— ) =wp {t—— )+ uwbz(t)wb3(t)At + iAl‘ etc.
2 2 I I

(14.102)

where the product wy, (f)wp3 (¢) is approximated by

1 At At At At
wpr (Dwpz () = 3 |:Wb2 (t — 7) wp3 (t — 7) + wpp (l‘ + 7) wp3 (l + 7):| .

(14.103)

wp (t + %) is determined by iterative solution of the last two equations. Starting
with wp (t — %) convergence is achieved after few iterations.
14.12 Example: Free Symmetric Rotor

For the special case of a free symmetric rotor (I, = I3, N, = 0) Euler’s equations
simplify to:

wpy =0 (14.104)
1, — 1
b = 2D s = Mg (14.105)
Ipo3)
Iy — 1
iy = 22w = —Awin (14.106)
Ino3)
1, — I
A= 2,,. (14.107)
Inp3)

Coupled equations of this type appear often in physics. The solution can be found
using a complex quantity

2 = wpy + iwps (14.108)

which obeys the simple differential equation




342 14 Rotational Motion

2 =Wy + iwpz = —i(idwpz + Awpp) = —iAR2 (14.109)

with the solution

2 = e, (14.110)
Finally
wp1(0) wp1(0)
wp = | N(R2oe™™) | = | wp2(0) cos(Ar) + wp3(0) sin(Ar) (14.111)
(20~ wp3(0) cos(Ar) — w2 (0) sin(Ar)

i.e. wy, rotates around the 1-axis with frequency .

14.13 Kinetic Energy of a Rotor

The kinetic energy of the rotor is

Eyin = Z %”,2 = Z %(R+Apib)2

i i

m; . . . . M. m; .
=2 SR+ plADR+Apy) = TR + > = piATAp, (14.112)

The second part is the contribution of the rotational motion. It can be written as

m;

2

i

1
PLWEpy = ~wlilw,  (14.113)

m;
v =25 P Wy AT AWy, = — 5

since

2 2
Wiy T Wy —WpiWpr —Wp1Whp3
2 2 2 2 T
-Wy = —WpiWpy Wy + Wz —WpWp3 =Wy — Wpwy,. (14.114)
2 2
—WpiWp3  —WpWp3 Wi + Wi,

14.14 Parametrization by Euler Angles

So far we had to solve equations for all 9 components of the rotation matrix. But there
are six constraints since the column vectors of the matrix have to be orthonormalized.
Therefore the matrix can be parametrized with less than 9 variables. In fact it is
sufficient to use only three variables. This can be achieved by splitting the full rotation
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into three rotations around different axis. Most common are Euler angles defined by
the orthogonal matrix [173]

c0S 1) cos ¢p — cos @ sin ¢ sinp — sin 1) cos ¢ — cos @ sin ¢pcosty  sin @ sin ¢
cos 1 sin ¢ 4 cos 0 cos ¢ sin ) — sin ) sin ¢ + cos € cos ¢ cos 1 — sin 6 cos ¢
sin @ sin 1 sin 6 cos ¢ cos

(14.115)

obeying the equations

. i 0 0
b= w, s1nq.écos o, cos<.bcos . (14.116)
sin ° sinf
0 = wy cos @ + wy sin @ (14.117)
)= 0O, COSP (14.118)

sing  sing

Different versions of Euler angles can be found in the literature, together with
the closely related cardanic angles. For all of them a sin § appears in the denomi-
nator which causes numerical instabilities at the poles. One possible solution to this
problem is to switch between two different coordinate systems.

14.15 Cayley—Klein-Parameters, Quaternions,
Euler Parameters

There exists another parametrization of the rotation matrix which is very suitable for
numerical calculations. It is connected with the algebra of the so called quaternions.
The vector space of the complex 2 x 2 matrices can be spanned using Pauli matrices
by

10 01 0—i 10
1=(01) Ux:(lo) O'y=(l. 0) UZ:(O—I)’ (14.119)

Any complex 2 x 2 matrix can be written as a linear combination
¢l +co. (14.120)

Accordingly any vector x € R® can be mapped onto a complex 2 x 2 matrix:

_ z x—1y
X — P_(x~|—iy _; ) (14.121)

Rotation of the coordinate system leads to the transformation

P = QPQT (14.122)
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where

af
0= (7 5) (14.123)

is a complex 2 x 2 rotation matrix. Invariance of the length (|x| = /— det(P)) under

rotation implies that Q must be unitary, i.e. @7 = Q™! and its determinant must be
1. Explicitly

T ar _ -1 1 6o —p
o —(ﬂ* 5*)—Q = %5 (—v a) (14.124)

and Q has the form

0= (_Og f) with |al> + |8 = 1. (14.125)

Setting x4 = x =£ iy, the transformed matrix has the same form as P:

oPQ'

(ofx, 4 Fax + (ol — 18Pz~ +oPx — 20

N a*xy — B — 2a% 3z —a*fxy — af*x_ — (Jaf* — Bz

_ ( Z x/—,) , (14.126)
x+ —Z

From comparison we find the transformed vector components:

X = %(xﬁr +x )= %(oﬁ"2 — g + %(a2 — B*2)x_ — (af + a* )z

*2 2 k2 32 coox2 2 *2 _ 32
_aTta 25 LRI a;ﬁ By aptarsh:  (14.127)

1 1 1 1
Y =504 —al) = @+ Phxg + (52 = 0P+ (-0t 5+ ap)

*2 2 2 2 *2 2 *2 2
« « .,6 +ﬂx+a +a 4+ [G*“+ 0

- 5 y+i(@*f —aB)z  (14.128)

7 = (@*B+afHx +i(a*B - af*)y + (af* - 181z (14.129)
This gives us the rotation matrix in terms of the Cayley—Klein parameters « and 3:

(1'*2—}-()42—[1*2—[12 i(a*z_az+[3*2_[32) _ * A%
A= | armalsnp atratistes (aeta ) (14.130)
- 2 . 2 7(—0426 +Cz"/3) ) ’
(@*B+af) i(a*f—af*)  (al” =617
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For practical calculations one often prefers to have four real parameters instead of
two complex ones. The so called Euler parameters qo, ¢1, q2, g3 are defined by

a=qo+tigz [=q+iq. (14.131)

Now the matrix Q

+ i +i
Q:(Clo q3 q2 q1

. ; =qol +iqi0, +iqr0, + ig30 14.132
—612+MI1610—1613) ot 420y T 1430z ( )

becomes a so-called quaternion which is a linear combination of the four matrices
U=1 I=io, J=io, K=io, (14.133)

which obey the following multiplication rules:

P=r=K=-U

lJ=-JI=K
JK =—-KJ] =1
Kl = —-IK =J. (14.134)

In terms of Euler parameters the rotation matrix reads

G+at—a— @ 2@a+4q093) 29193 — qoq2)
A= 2q92—q093) a5—ai+a— a3 29293 + qoq1) (14.135)
2(q193 + q0q2)  2(q293 — qoq1) 43 — 47 — @3 + 43

and from the equation A = WA we derive the equation of motion for the quaternion

qo 0 wr w w3 qo
q1 L —w 0 —ws w q1
. = = 14.136
7g) 2| w2 w3 0 —w 9 ( )
73] —w3 —wy w; 0 q3
or from A = AW,, the alternative equation
qo 0 wip wy wyp q0
! [ B
o | _ L) —ww 0wy —wy a | (14.137)
7g) 2| —ww —wsp 0w Q@
7] —w3p wyp —wp 0 q3

Both of these equations can be written briefly in the form

q=Waq. (14.138)
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Example: Rotation Around the z-axis

Rotation around the z-axis corresponds to the quaternion with Euler parameters

cos %’
q= 0 (14.139)

14 WE
S 5

as can be seen from the rotation matrix

(cos "’7’)2 — (sin %’)2 —2cos 4 sin & 0
A= 2cos 4sin%  (cos %’)2 — (sin *7’)2 0
0 0 (cos “’7’)2 + (sin “’7’)2
coswt —sinwt 0
= | sinwt coswt O |. (14.140)
0 0 1

The time derivative of q obeys the equation

000w cos & —4 sinwr

. 1 0 0—-woO 0

q= 5 0w 0 0 0 = 0 . (14.141)
—w0 00 —sin < —¥ coswt

2 2

After a rotation by 27 the quaternion changes its sign, i.e. q and —q parametrize the
same rotation matrix!

14.16 Solving the Equations of Motion with Quaternions

As with the matrix method we can obtain a simple first or second order algorithm
from the Taylor series expansion

_ - ~ A
q(t+ A = q@) + W()q(t) At + (W () + Wz(t))q(t)Tt +--o. 0 (14.142)

Now only one constraint remains, which is the conservation of the norm of the
quaternion. This can be taken into account by rescaling the quaternion whenever its
norm deviates too much from unity.

It is also possible to use Omelyan’s [174] method:

qt +AD) =q(t)+ W (r + %) %(q(t) +q(t + A1) (14.143)
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gives
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At =\ Al ~
q(t+ Ar) = 1—7W 1+7W q() (14.144)
where the inverse matrix is
—1
Ay o b 1+ﬁﬁ/ (14.145)
2 1 —|—w2Al—gz 2 '
and the matrix product
At =\ At ~ 1 — w24t At
| —— 774 1+ =—w) = 2 - (14.146)
2 2 1 +w28 ] 424l

16

This method conserves the norm of the quaternion

Problems

Problem 14.1 Free Rotor

16

and works quite well.

In this computer experiment we compare different methods for a free rotor (Sect. 14.8,

Fig. 14.5):
e explicit first order method (14.67)

A(r + A1) = A(t) + AWy (1) At + O(Ar%)

e explicit second order method (14.69)

Fig. 14.5 Free asymmetric
rotor

(14.147)

L=const
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Fig. 14.6 Rotor in an A A A A A A A
electric field N

At + Af) = A(t) + AW, () At + % (AW (1) + A Wp(1)) AP + O(AF)
(14.148)

e implicit second order method (14.93)

At At At A\ ! 5
A+ A = A() (1 W (t—l— 7)) (1 Ty (r+ —)) FO(AP).

2 2
(14.149)

The explicit methods can be combined with reorthogonalization according to
(14.79) or with the Gram-Schmidt method. Reorthogonalization threshold and time
step can be varied and the error of kinetic energy and determinant are plotted as a
function of the total simulation time.

Problem 14.2 Rotor in a Field

In this computer experiment we simulate a molecule with a permanent dipole moment
in a homogeneous electric field E (Fig. 14.6). We neglect vibrations and describe the
molecule as a rigid body consisting of nuclei with masses m; and partial charges Q;.
The total charge is >_. Q; = 0. The dipole moment is

p=> O (14.150)

and external force and torque are

Fou = > OE=0 (14.151)

New= > OrixE=pxE. (14.152)
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Fig. 14.7 Molecular L 5

collision L
1 /\\

The angular momentum changes according to

d

—Liy = E 14.153

Ap p X ( )
where the dipole moment is constant in the body fixed system. We use the implicit
integrator for the rotation matrix (14.93) and the equation

Wy(1) = =1, Wy(O)Line (1) + I, 'A™ (1) (p(1) x E) (14.154)

to solve the equations of motion numerically.
Obviously the component of the angular momentum parallel to the field is con-
stant. The potential energy is

U=-> QEr;=—pE. (14.155)

Problem 14.3 Molecular Collision

This computer experiment simulates the collision of two rigid methane molecules
(Fig. 14.7). The equations of motion are solved with the implicit quaternion method
(14.143) and the velocity Verlet method (13.11.4). The two molecules interact by a
standard 6-12 Lennard-Jones potential (15.24) [163]. For comparison the attractive
r~% part can be switched off. The initial angular momenta as well as the initial
velocity v and collision parameter b can be varied. Total energy and momentum are
monitored and the decomposition of the total energy into translational, rotational and
potential energy are plotted as a function of time.

Study the exchange of momentum and angular momentum and the transfer of
energy between translational and rotational degrees of freedom.




Chapter 15
Molecular Mechanics

Classical molecular mechanics simulations have become a very valuable tool for
the investigation of atomic and molecular systems [175-179], mainly in the area of
materials science and molecular biophysics. Based on the Born—Oppenheimer sep-
aration which assumes that the electrons move much faster than the nuclei, nuclear
motion is described quantum mechanically by the Hamiltonian

H =[T""+U (rf*)]. (15.1)

Molecular mechanics uses the corresponding classical energy function

Nuc Nuc (p;vuc)z Nuc
TV + U (r) ):ZT+U(rj ) (15.2)
j J

which treats the atoms as mass points interacting by classical forces
F; = —grad, U (r}*). (15.3)

Stable structures, i.e. local minima of the potential energy can be found by the
methods discussed in Chap. 6. Small amplitude motions around an equilibrium geom-
etry are described by a harmonic normal mode analysis. Molecular dynamics (MD)
simulations solve the classical equations of motion

dzl','

miﬁ =F; = —grad, U (15.4)

numerically.
The potential energy function U (r;v ”C) can be calculated with simplified quan-

tum methods for not too large systems [180, 181]. Classical MD simulations for
larger molecules use empirical force fields, which approximate the potential energy
surface of the electronic ground state. They are able to describe structural and con-
formational changes but not chemical reactions which usually involve more than one

© Springer International Publishing AG 2017 351
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DOI 10.1007/978-3-319-61088-7_15
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Fig. 15.1 (Molecular z
coordinates) Cartesian
coordinates (Left) are used
to solve the equations of
motion whereas the potential y
energy is more conveniently
formulated in internal
coordinates (Right)

electronic state. Among the most popular classical force fields are AMBER [182],
CHARMM [183] and GROMOS [184, 185].

In this chapter we discuss the most important interaction terms, which are con-
veniently expressed in internal coordinates, i.e. bond lengths, bond angles and di-
hedral angles. We derive expressions for the gradients of the force field with respect
to Cartesian coordinates. In a computer experiment we simulate a glycine dipeptide
and demonstrate the principles of energy minimization, normal mode analysis and
dynamics simulation.

15.1 Atomic Coordinates

The most natural coordinates for the simulation of molecules are the Cartesian co-
ordinates (Fig. 15.1) of the atoms,

r; = (X, yi, i) (15.5)

which can be collected into a 3/N-dimensional vector

&1, & &) = (X1, Y1, 21, X2 - XN, YN» TN)- (15.6)

The second derivatives of the Cartesian coordinates appear directly in the equations
of motion (15.4)

mé, =F, r=1---3N. (15.7)

Cartesian coordinates have no direct relation to the structural properties of molecules.
For instance a protein is a long chain of atoms (the so called backbone) with additional
side groups (Fig. 15.2).

The protein structure can be described more intuitively with the help of atomic dis-
tances and angles. Internal coordinates are (Fig. 15.3) distances between two bonded
atoms (bond lengths)
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Fig. 15.2 (Conformation of
a protein) The relative

orientation of two successive o R
protein residues can be H H H ‘ H H 0
described by three angles \N/ H ¢ ORI v N/ H ‘
W@, @, w) P P I BN
N c AN \ c’ N / \
o 1 H 1 Cc
F T
R . R

Fig. 15.3 (Internal
coordinates) The structure of
a molecule can be described
by bond lengths, bond angles
and dihedral angles

bij = |rij| =|r; — I'jl, (15.8)

angles between two bonds (bond angles)

@ijk = arccos UL (15.9)
' [rij] 4]

and dihedral angles which describe the planarity and torsions of the molecule. A
dihedral angle (Fig. 15.4) is the angle between two planes which are defined by three
bonds

Oijx1 = sign(0;jr;) arccos(m;jxMjg) (15.10)
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Fig. 15.4 Dihedral angle

Fig. 15.5 (Glycine 13

dlpeptlde.mod.el) The H10—NI1 _C2/H12
glycine dipeptide is the / H14
simplest model for a peptide. H11 \ /

It is simulated in C3—N4 08
Problem 15.1. Optimized O? |
internal coordinates are -
shown in Table 15.1 /CS' e

HIS HI6 o oo

Ij; X Xgj Irj X T

n;jr = (1511)

T W=

[rij x 1y |t x ryl

where the conventional sign of the dihedral angle [186] is determined by
signf;j = sign (r; (M X Mjgp)) . (15.12)

Internal coordinates are very convenient for the formulation of a force field. On the
other hand, the kinetic energy (15.2) becomes complicated if expressed in internal
coordinates. Therefore both kinds of coordinates are used in molecular dynamics
calculations. The internal coordinates are usually arranged in Z-matrix form. Each
line corresponds to one atom i and shows its position relative to three atoms j, k, / in
terms of the bond length b;;, the bond angle ¢;; and the dihedral angle §;; (Fig. 15.5
and Table 15.1).
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Table 15.1 (Z-matrix) The optimized values of the internal coordinates from Problem 15.1 are
shown in Z-matrix form. Except for the first three atoms the position of atom i is given by its

distance b;; to atom j, the bond angle ¢;jx and the dihedral angle 6;

Numberi | Label j k 1 Bond Bond Dihedral
lengEh angle ¢;jx | Oijki
bij(A)

1 N1

2 C2 1 1.45

3 C3 2 1 1.53 108.6

4 N4 3 2 1 1.35 115.0 160.7

5 C5 4 3 2 1.44 122.3 —152.3

6 Co6 5 4 3 1.51 108.7 —153.1

7 o7 3 2 1 1.23 121.4 —26.3

8 08 6 5 4 1.21 124.4 123.7

9 09 6 5 4 1.34 111.5 —56.5

10 H10 1 2 3 1.02 108.7 —67.6

11 H11 1 2 3 1.02 108.7 493

12 H12 2 3 4 1.10 109.4 —76.8

13 HI13 2 3 4 1.10 109.4 383

14 H14 4 3 2 1.02 123.1 27.5

15 H15 5 4 3 1.10 111.2 -32.5

16 H16 5 4 3 1.10 111.1 86.3

17 H17 9 6 5 0.97 106.9 —147.4

15.2 Force Fields

Classical force fields are usually constructed as an additive combination of many
interaction terms. Generally these can be divided into intramolecular contributions
Upondea Which determine the configuration and motion of a single molecule and
intermolecular contributions U,,,,—pondea describing interactions between different

atoms or molecules

U= Ubonded + Unon—bonded~

15.2.1 Intramolecular Forces

(15.13)

The most important intramolecular forces depend on the deviation of bond lengths,
bond angles and dihedral angles from their equilibrium values. For simplicity a sum
of independent terms is used as for the CHARMM force field [183, 187, 188]
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0 180 360 0 ‘ o ®

Fig. 15.6 Intramolecular forces

Uinira = z Uil;and + Z U;;’]igle + Z Uilj]kB + Z Ui(j'l}f;edml + Z U;'](;tcfruper'
(15.14)

The forces are derived from potential functions which are in the simplest case ap-
proximated by harmonic oscillator parabolas (Fig.15.6), like the bond stretching
energy

1
bond 02
U™ = Fkij(bij — byj) (15.15)

angle bending terms

1

angl

Ui = Skij(@ije = 03 (15.16)
together with the Urey-Bradly correction

1
UL = Skt~ 2 1517
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and “improper dihedral” terms which are used to keep planarity
U,-’;Zfroper = %kijkl(aijkl - 9?jk1)2~ (15.18)
Torsional energy contributions are often described by a cosine function'
aedral = kiji (1 — cos(mBiju — 0%,) (15.19)

where m = 1, 2, 3, 4, 6 describes the symmetry. For instance m = 3 for the three
equivalent hydrogen atoms of a methyl group. In most cases the phase shift G?j w=0
or G?j « = 7. Then the dihedral potential can be expanded as a polynomial of cos 6,
for instance

m=1: U5 = k(1 % cos 6 x1) (15.20)

m=2: Ujier = k £ k(1 — 2(cos 0;j11)°) (15.21)
_a. dihedral __ B o3

m=3: Uiy = k(1 &3 cos 8 F 4(cos O;i1)7). (15.22)

For more general H?j « the torsional potential can be written as a polynomial of
cos 0;jx and sin 0; 4.

The atoms are classified by element and bonding environment. Atoms of the same
atom type are considered equivalent and the parameters transferable (for an example
see Tables 15.2, 15.3, 15.4).

15.2.2 Intermolecular Interactions

Interactions between non-bonded atoms
Unonfbanded = UCoul + UUdW (1523)

include the Coulomb interaction and the weak attractive van der Waals forces which
are usually combined with a repulsive force at short distances to account for the Pauli
principle. Very often a sum of pairwise Lennard-Jones potentials is used (Fig. 15.7)
[163]

1Some force-fields like Desmond [189] or UFF [190] use a more general sum k Z,A,:’:() Ccm cos(mb —
69).
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12 6

prdw — Z Z Uilj;'lw — Z ;46,']‘ :lT]Z — U_;] . (15.24)

o r.
AAB i€A,jeB A B 1 1

The charge distribution of a molecular system can be described by a set of multi-
poles at the position of the nuclei, the bond centers and further positions (lone pairs
for example). Such distributed multipoles can be calculated quantum chemically for
not too large molecules. In the simplest models only partial charges are taken into
account giving the Coulomb energy as a sum of atom-atom interactions

UcOuzzz Z 4‘11'%' . (15.25)
AT Bien jep Theolij

More sophisticated force fields include higher charge multipoles and polarization
effects.

15.3 Gradients

The equations of motion are usually solved in Cartesian coordinates and the gradients
of the potential are needed in Cartesian coordinates. Since the potential depends only
on relative position vectors r;;, the gradient with respect to a certain atom position
r; can be calculated from

Table 15.2 (Atom types of the glycine dipeptide) Atom types for glycine oligopeptides according
to Bautista and Seminario [191]. The atoms are classified by element and bonding environment.
Atoms of the same atom type are considered equivalent

Atom type Atoms
C C3

Cy C2,C5
C Co6

N N4

Ny N1

o 07

01 09

0> 08

H H14

H H12, H13, H15, H16
H> H17

H; H10,H11
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Table 15.3 (Bond stretching parameters) Equilibrium bond lengths (A) and force constants
(kcal mol~'A=2) for the glycine dipeptide from [191]

Bond type b0 k Bonds
rC,N 1.346 1296.3 C3-N4
rC1,N 1.438 935.5 N4-C5
rC1.N2 1.452 887.7 NI-C2
rca.cl 1.510 818.9 C5-C6
rce,cl 1.528 767.9 C2-C3
rc2.02 1.211 2154.5 C6-08
rc,o 1.229 1945.7 C3-07
rc2,01 1.339 1162.1 C6-09
I'N.H 1.016 1132.4 N4-H14
rN2,H3 1.020 1104.5 N1-H10, N1-H11
TC1,H1 1.098 900.0 C2-H12, C2-H13,
C5-H15,C5-H16
ro1,H2 0.974 1214.6 09-H17
Fig. 15.7 (Lennard-Jones
potential) The 6-12 potential
(15.24) has its minimum at
Fmin = V20 ~ 1.120 with
Unin = —¢ -
«
=)
| 1 | L |
1 1.2 1.6 1.8 2
grad, = Z(éik — 5jk)gradr[j. (15.26)

i<j

Therefore it is sufficient to calculate gradients with respect to the difference vectors.
Numerically efficient methods to calculate first and second derivatives of many force
field terms are given in [192-194]. The simplest potential terms depend only on
the distance of two atoms. For instance bond stretching terms, Lennard-Jones and

Coulomb energies have the form

Ui; = U(ry;) = U(ry5))

(15.27)
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Table 15.4 (Bond angle parameters) Equilibrium bond angles (deg) and force constants
(kcal mol~'rad—2) for the glycine dipeptide from [191]

Angle type @0 k Angles
oN.c.Cl 115.0 160.0 C2-C3-N4
éci.N,c 122.3 160.1 C3-N4-C5
$c1.c2,01 111.5 156.0 C5-C6-09
$c1,c2,02 124.4 123.8 C5-C6-08
bci.c.o 121.4 127.5 C2-C3-07
$02,c2,01 124.1 146.5 08-C6-09
®n.C.0 1232 132.7 N4-C3-07
éc.c1,H1 110.1 74.6 H12-C2-C3,
H13-C2-C3
bca.c1.HI 109.4 69.6 H16-C5-C6,
H15-C5-C6
bc.N.H 123.1 72.0 C3-N4-H14
dCILN.H 114.6 68.3 C5-N4-H14
bc1.N2.H3 108.7 71.7 H10-N1-C2,
H11-N1-C2
H1.C1.HI 106.6 48.3 H13-C2-H12,H15-C5-
H16
GH3,N2,H3 107.7 452 H10-N1-H11
bc.c1.N2 109.0 139.8 N1-C2-C3
bca.c1.N 108.6 129.0 N4-C5-C6
$c2,01,H2 106.9 72.0 H17-09-C6
éN.C1H1 111.1 73.3 H15-C5-N4,
H16-C5-N4
dN2.C1.HI 112.6 80.1 H13-C2-N1,
H12-C2-N1

where the gradient is

grad, Ujj = — —L. (15.28)

ri;

The most important gradients of this kind are

| ¥ bo
grad, U/ = k(rij — b)) =% =k (1 - —) rij (15.29)

ij Tij

ij ij

vdw o-iljz U?j
gradrij Ui,j = 246,']' _27 + — |¥ij (15.30)
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qidj
3
dmeor; j

I _
grad, U™ = —

T i

rij. (15.31)

The gradient of the harmonic bond angle potential is

grad, U8 = k(yj — ¢°)grad, éij (15.32)

LJ

where the gradient of the angle can be calculated from the gradient of its cosine

1 1 Ty T;jTk;
grad, ¢ijx = —— grad, cos ¢jjx = —— ( — rjj
K singyje - Y sin @i \ IrijlIri| v 3 rgl
1 Iy COS @ik
= —— ( L d)’z’ ri (15.33)
sin ¢y \ |rij ||yl Iri;]
1 I COS O ik
grad, ¢ijx = —— ( i Cos P rk,-). (15.34)
kj 2
sin ¢ \ |Irij ||yl ry; |

In principle, the sine function in the denominator could lead to numerical problems
which can be avoided by treating angles close to O or 7 separately or using a function
of cos ¢;jx like the trigonometric potential

angle 1
U™ = Shije(cos dije — cos ¢fy)’ (15.35)

instead [190, 195, 196]. Alternatively, the gradient of ¢ can be brought to a form
which is free of singularities by expressing the sine in the denominator by a cosine
[197]

1 r;iTki
grad . ¢ijk = — — Ty — ;2 1)
\/rijrkj(l — cos? ¢ijx) ij

_ r,-zjl‘kj — (r;jry;)r;; _ _i rij X (rgj X rij) (15.36)
r,-j\/(rizjrkj — (rijrkj)rij)z Tij ‘rij X (rkj X rij)’
and similarly
1 rp X (r;; X g
grad rkj¢ijk = — Kj X (T ki) (15.37)

Zj i x (ryj x 1|

Gradients of the dihedral potential are most easily calculated for 03 w =0orm.
In that case, the dihedral potential is a polynomial of cos 6;;x; only (15.20)—(15.22)
and
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dihedral
; ikl
grad, U = ————grad, cos 0 (15.38)
dcos Hijkl

whereas in the general case 0 < 6, < 7 application of the chain rule gives

gradUlf;’Z}"d’“I = mk;ji sin(mO;ju — 6°)) grad O;jki- (15.39)

If this is evaluated with the help of

grad&ijkl = —
S k1

grad cos 0; (15.40)

singularities appear for § = 0 and 7. The same is the case for the gradients of the
harmonic improper potential

gradU} """ = k(O — 0, gradf)jy. (15.41)

Again, one possibility which has been often used, is to treat angles close to 0 or 7
separately [188]. However, the gradient of the angle 6; ;1 can be calculated directly,
which is much more efficient [198].

The gradient of the cosine follows from application of the product rule

grad cos § = grad Fij X Oy Ty > T . (15.42)
[rij < x| [ x T

First we derive the differentiation rule

grad, [(a x b)(c x d)] = grad, [(ac)(bd) — (ad)(bc)]
=c(bd) —d(bc) =b x (c x d) (15.43)

which helps us to find

gradm (I'ij X I'kj)(l'kj X rkl) = I'kj X (l‘kj X I‘kz) (1544)

gradm (ri; X rj)(rg; X ry) =rg; X (X X rij) (15.45)
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gradrkj (rij X rkj)(rkj X rkl) =Ty X (I’,’j X rkj) + rj; X (I'k[ X rkj)~ (1546)
and
1 Iy X (rij X I'k/')
grad vy |r~ o = — 3 (15.47)
ij kj |rij X rkj|
1 r;; X (ry; X r;;
grad _ T X (ry X Ty) (15.48)
kj X T 3
1 ry X (g X Typ)
grad "y =— 3 (15.49)
Iy X Iy |rej x Ty
1 Iy X (T X Tgj)
_ K i
grad S | = - (15.50)
kj X Tk ‘rkj X rkl|
Finally we collect terms to obtain the gradients of the cosine [197]
rgj X (Fgj X Tgp) rgj X (rjj X rgj)
gradr[j cos Ok = |r-- T ! |r 1 | - 5 cos 0; k1 (15.51)
ij kj | |Xkj kl ’rij X rkj‘
| ] rkj
= —L— x (njx —mjjgcosf) = ——— x (g —n;jx(mjgn;ji))
[rij x T [rij > x|
rkj
= ———— x (mjjr x (g x njjp))
[rij T
Tk 1 . sin 0 T
=—1 % (“ijk X —(—Tg;) sin 0) =— " (nijk X (—rkj)) =
[rij T kj rj o [rij x|
sin 6 1 . n;;
e EE— (—n,-jkr,?j) = —Tkj sin 97”/{
rj[rij x v [rij x Tk
ry; X (g X rj) ry; X (g X rgj)
grad,  cos 0y = : . - 5— €08 0k (15.52)
‘rij X rk,/’ |rk./ X rkl’ }rkj X I'k1|
Iy X Ipj X
= ——— (—mij + 0y cos ) = ——— (—ngj + 0 (0 5))
‘rkj X I'k1| ’rkj X I‘k1|
I

T T rg x| (e X (mijic X M)
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I Irj . sin 0
=—T———— X | Dj X —~sin 6 =——F—I X (njkl X rkj)
|rk,- x rkzl Tkj Tkj |rkj x l”k1|
Fj sin

- ’rkj X I‘k]’njkl

I X (Xij X Tgj) + 1 X (T X Tgj)
[rij % x| x> T

T X (g X Tpg)

gradrk/_ cos O;ju =

_ rij X (rkj X rij) 0s 0
rij x e x e
rij

os 0 (15.53)

Iy
R

B |l‘[j X l‘kj| x (n”k x (njkl x nl']k)) + |I’kj X I'kl|

r;; yj . Ik Iyj .
=Y ¥ (n,-jkx (—jsmﬁ))—i—— njy x —Lsin@
|l','j X I’kj| rkj |rkj X I’k/| rkj

_sin9 1 r~><(n~ ><r‘)_‘r_sin0 1
= rkj —|rij erj| ij ljk kj

m X (_njld + ;i COS 0) + X (Ilijk — Ny COS 9)
r;; (l’ljk] X (nijk X njkl))

Tj—|rkj » rkl|rkl X (njkl X rkj)

sin 6 l'lijk(l‘,‘jrkj) sin 0 njkl (rklrkj)

rij v x 1yl ri |rg % rul
L;jTj LTy
= ——5— grad;; cos — —5— grady, cos 0.
kj kj

15.4 Normal Mode Analysis

The nuclear motion around an equilibrium configuration can be approximately de-
scribed as the combination of independent harmonic normal modes. Equilibrium
configurations can be found with the methods discussed in Sect.6.2. The conver-
gence is usually rather slow (Fig. 15.8) except for the full Newton-Raphson method,
which needs the calculation and inversion of the Hessian matrix.

15.4.1 Harmonic Approximation

At an equilibrium configuration
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Fig. 15.8 (Convergence of

100 1000 1000

(15.54)

the gradient of the potential energy vanishes. For small deviations from the equilib-

energy and gradient) The £
energy of the glycine )
dipeptide is minimized with =
the methods of steepest %
descent and conjugate §
gradients ©
=
.8
kS|
;’3
)
I 10
eq
gi = 6,’
rium
eq
<i = fz‘ - 5,'

approximation by a truncated Taylor series gives
UG-Gn) =Up+ Géj+
Z AGi 3( TR

and the equations of motion are approximately

mzCz = —%U = ZHt iSi

Assuming periodic oscillations

G=¢e™

we have
2,40 0
WG = ZHijCj-
J
If mass weighted coordinates are used, defined as

T = \/nTlCt

(15.55)

1
-~ Uo+ 3 ;Hi,jcicj (15.56)

(15.57)

(15.58)

(15.59)

(15.60)



366 15 Molecular Mechanics

this becomes an ordinary eigenvalue problem
H;;
2.0 i 0
0 — — 79, 15.61
PNy — (15.61)

The eigenvectors u, of the symmetric matrix

- H;;
iy = (15.62)

m;mg;
are the solutions of

> Hyjujr = My, (15.63)
J

and satisfy (15.61)
wzl/t,'r = Z I:Iijujr = )\rl/t,'r (1564)
with normal mode frequencies

wr = VA (15.65)

Finally, the Cartesian coordinates are linear combinations of all normal modes

Uir
i = C,——e"“r. 15.66
G=>.C N (15.66)
r

Fig. 15.9 (Normal mode B
distribution for the dipeptide € 50

. N
model) The cumulative %
distribution (Sect.9.1.2) of 2 40 hinininid
normal mode frequencies is E H-stretch
shown for the glycine g
dipeptide. Translations and § 30 7]
rotations of the molecule %S
correspond to the lowest 6 8 10 |

e

frequencies which are close g
to zero. The highest =
frequencies between 3100 Z 10 7]
and 3600 cm ™! correspond = 4 . .
to the stretching modes of g 0 | Fotation, tra?slatloq ! ‘ \ :
the 8 hydrogen atoms °© 0 1000 2000 3000 4000

frequency fiw (cm'l)
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In a true local energy minimum the Hessian matrix H;; is positive definite and
all frequencies are real valued. The six lowest frequencies are close to zero and
correspond to translations and rotations of the whole system (Fig. 15.9).

Problems

Problem 15.1 Simulation of a Glycine Dipeptide

In this computer experiment a glycine dipeptide (Fig. 15.5) is simulated. Parameters
for bond stretching (Table 15.3) and bond angle (Table 15.4) terms have been derived
from quantum calculations by Bautista and Seminario [191].

e Torsional potential terms (Table 15.5) can be added to make the structure more
rigid. This is especially important for the 09 — H17, N4 — Hl4and N1 — H10
bonds, which rotate almost freely without torsional potentials.

e The energy can be minimized with the methods of steepest descent or conjugate
gradients

e A normal mode analysis can be performed (the Hessian matrix is calculated by
numerical differentiation). The rth normal mode can be visualized by modulating
the coordinates periodically according to

& =9 cj—m_ oS w,t. (15.67)

1

e The motion of the atoms can be simulated with the Verlet method. You can stretch
the O9 — H17 or N4 — H 14 bond and observe, how the excitation spreads over
the molecule.

Table 15.5 (Torsional potential terms) Torsional potential terms V;jx = kijx (1 — cos(0;jx —
9?/ «)» Which can be added to the force field. Minimum angles are from the optimized structure
without torsional terms (15.1). The barrier height of 2k;jx; = 2 keal/mol is only a guessed value

i Jj k l H?jkl kijki Backbone
10 1 2 3 —67.6 1.0

14 4 3 2 27.5 1.0

17 9 6 5 —1474 1.0

4 3 2 1 160.7 1.0 '4
5 4 3 2 —152.3 1.0 w
6 5 4 3 —153.1 1.0 [}
8 6 5 4 123.7 1.0

9 6 5 4 —56.5 1.0

15 5 4 3 —32.5 1.0

16 5 4 3 86.3 1.0

7 3 2 1 —26.3 1.0




Chapter 16
Thermodynamic Systems

An important application for computer simulations is the calculation of thermody-
namic averages in an equilibrium system. We discuss two different examples:

In the first case the classical equations of motion are solved for a system of
particles interacting pairwise by Lennard—Jones forces (Lennard—Jones fluid). The
thermodynamic average is taken along the trajectory, i.e. over the calculated coor-
dinates at different times r;(t,). We evaluate the pair distance distribution function

1
g(R)=m <Z5(rij—R) >, (16.1)
=

the velocity auto-correlation function

C(t) =< v(tp)v(t) > (16.2)
and the mean square displacement

Ax? =< (x(t) — x(19))* > . (16.3)

In the second case the Metropolis method is applied to a one- or two-dimensional
system of interacting spins (Ising model). The thermodynamic average is taken over
a set of random configurations q . We study the average magnetization

<M>=p<S§> (16.4)

in a magnetic field and the phase transition to the ferromagnetic state.

© Springer International Publishing AG 2017 369
P.O.J. Scherer, Computational Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-61088-7_16
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16.1 Simulation of a Lennard—Jones Fluid

The Lennard—Jones fluid is a simple model of a realistic atomic fluid. It has been
studied by computer simulations since Verlet’s early work [164, 199] and serves as a
test case for the theoretical description of liquids [200, 201] and the liquid-gas [202]
and liquid-solid phase transitions [203, 204].

In the following we describe a simple computer model of 125 interacting particles'
without internal degrees of freedom (see problems section). The force on atom i is
given by the gradient of the pairwise Lennard—Jones potential (15.24)

12 6
Fi=ZFij=_4€ZVz( ——)—4 2(120 _6;7 )(rz r)).
i lj ij

L 1

(16.5)

We use argon parameters m = 6.69 x 1072°kg, e = 1.654 x 1072']J, o=

3.405 x 1071%m [163]. After introduction of reduced units for length r* = %r,

energy E* = éE and time r* = \/e/mao? t, the potential energy
1 1
U* = N — — — 16.6
& (%) e

and the equation of motion

dt*2 fi ‘42( 7 r*s)(r*—r}‘-) (16.7)

Ly

become universal expressions, i.e. there exists only one universal Lennard—Jones
system. To reduce computer time, usually the 612 potential is modified at larger
distances which can influence the simulation results [205]. In our model a simple
cutoff of potential and forces at ry.x = 10A is used.

16.1.1 Integration of the Equations of Motion

The equations of motion are integrated with the Verlet algorithm (Sect. 13.11.5)

A _ Fi([) 2
ri=r;(t) —r;(t — At) + —= At (16.8)
m

I'This small number of particles allows a graphical representation of the system during the simula-
tion.
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r;(t + At) = r;(t) + Ar; + O(Ar?). (16.9)

We use a higher order expression for the velocities to improve the accuracy of the
calculated kinetic energy

Ar;  SF;(t) — 2F;(t — At) N
Vigl = — + At + O (A?). (16.10)
At 6m

16.1.2 Boundary Conditions and Average Pressure

Molecular dynamics simulations often involve periodic boundary conditions to
reduce finite size effects. Here we employ an alternative method which simulates
a box with elastic walls. This allows us to calculate explicitly the pressure on the
walls of the box.

The atoms are kept in the cube by reflecting walls, i.e. whenever an atom passes
a face of the cube, the normal component of the velocity vector is changed in sign
(Fig. 16.1). Thus the kinetic energy is conserved but a momentum of mAv = 2mv
is transferred to the wall. The average momentum change per time can be interpreted
as a force acting upon the wall

2mv
Fl=< # > (16.11)

The pressure p is given by

1 Zwall& Zrefl. 2m VL
< >

— 16.12
6L2 dt ( )

With the Verlet algorithm the reflection can be realized by exchanging the values of
the corresponding coordinate at times f, and 7,,_;.

Fig. 16.1 Reflecting walls

n thed
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16.1.3 Initial Conditions and Average Temperature

At the very beginning the N = 125 atoms are distributed over equally spaced lattice
points within the cube. Velocities are randomly distributed according to a Gaussian
distribution for each Cartesian component v,

_ m__ —m/2%,T 16.13
f ) ‘/—zkaTe (16.13)

corresponding to a Maxwell speed distribution

3/
f(u) = ( ) 4rryemv /2Kl (16.14)

27TkBT

Assuming thermal equilibrium, the effective temperature is calculated from the
kinetic energy

2
kgT = — Ey;p. 16.15
B Iy B ( )

The desired temperature 7, is established by the rescaling procedure

kgT,
) L — 16.16
iy kB Tactual ( )

which is applied repeatedly during an equilibration run. The velocity distribution
f(Jv]) can be monitored. It approaches quickly a stationary Maxwell distribution
(Fig.16.2).

Fig. 16.2 (Velocity 0.5
distribution) The velocity
distribution is shown for
T = 100K and T = 500K 041 1
(histograms) and compared =
to the Maxwell speed Z o3k i
distribution (solid curves) 'E
S 02} -
el
o
&
0.1 1
0 |
0 10

5
velocity (A/ps)
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A smoother method to control temperature is the Berendsen thermostat
algorithm [206]

At kTo - kTactual
Vi > V; 1 + (1617)

Ttherm kTuctual
where T;j.-m 18 @ suitable relaxation time (for instance 7;j.,, = 20At). This method
can be used also during the simulation. However, it does not generate the trajectory

of a true canonical ensemble. If this is necessary, more complicated methods have to
be used [207]

16.1.4 Analysis of the Results

After an initial equilibration phase the system is simulated at constant energy (NVE
simulation) or at constant temperature (NVT) with the Berendsen thermostat method.
Several static and dynamic properties can be determined.

16.1.4.1 Deviation from the Ideal Gas Behavior
A dilute gas is approximately ideal with
pV = NkpT. (16.18)

For a real gas the interaction between the particles has to be taken into account. From
the equipartition theorem it can be found that”

pV = NkgT + W (16.19)

with the inner virial (Fig. 16.3)

1
W=<=->nF 16.20
< 3 Zi:l‘ > ( )

which can be expanded as a power series of the number density n = N/V [208] to
give

2
pV =NkBT(1+b(T)%+c(T) (g) + 0. (16.21)

2MD simulations with periodic boundary conditions use this equation to calculate the pressure.
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Fig. 16.3 (Inner virial) The F ‘ ‘ ‘ ‘ T
inner virial W (16.20, (b) -7
crosses and stars) is 5e-22- &
compared to pV — kT
(squares and circles) for two
values of the particle density
N/V =1073A"" (a) and
1.95 x 1073A~! (b),
corresponding to reduced =
densities n* = 03N/ V of -5e-221- ,:
0.040 and 0.077 | ; )

0e+00 - - i

inner virial W (J)
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The virial coefficient b(T') can be calculated exactly for the Lennard—Jones gas [208]:

2T anm 217 25 —1 e
b(T) = ——0° r U, 16.22
(T) 30 E:O 7 3 )(kBT) (16.22)

For comparison we calculate the quantity

|4 pV
— -1 16.23
N (NkBT ) ( )

which for small values of the particle density n = N/V correlates well (Fig. 16.4)
with expression (16.22).

Fig. 16.4 (Second virial oF ‘ e ‘@ 88 B —om=
coefficient) The value of “— @ 27 -
% (,&—VT - ) is shown for ° ///
two values of the particle 2 -2001 x/ 7]
density N/V = 1073 AA § ’?
(crosses) and - 400l ) |
1.95 x 1073 AA~! (circles) g o
and compared to the exact % ?
second virial coefficient b ‘B 600 i _
(dashed curve) (16.22) Z ;
g |
3 -800f- Ix .
1
1 L | L | L | L
0 200 400 600 800

Temperature (K)
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Fig. 16.5 (Radial pair 5
distribution) The normalized
radial distribution function
g(R)/gideai (R) is evaluated
for kT = 35K, 100K,
1000K and a density of
n=00254"3
corresponding to a reduced
density n* = o> N/ V of 1.0.
At this density the
Lennard—Jones system
shows a liquid-solid
transition at a temperature of
ca. 180K [204]

radial distribution function

L | L
5 10 15
distance (A)

16.1.4.2 Structural Order

A convenient measure for structural order [209] is the radial pair distribution function
(Fig.16.5)

_ 1 o _P(R<r,~_,-<R+dR)
9B =< 3z ;6@, R) >= o (16.24)

which is usually normalized with respect to an ideal gas, for which
Gideal(R) = 47n R*dR. (16.25)

For small distances g(R)/giq.q;(R) vanishes due to the strong repulsive force.
It peaks at the distance of nearest neighbors and approaches unity at very large
distances. In the condensed phase additional maxima appear showing the degree of
short (liquid) and long range (solid) order.

Equation (16.25) is not valid for our small model system without periodic bound-
ary conditions. Therefore g;4.,; Was calculated numerically to normalize the results
shown in Fig. 16.5.

16.1.4.3 Ballistic and Diffusive Motion

The velocity auto-correlation function (Fig. 16.6)

Ct)=<v()v(ty) > (16.26)
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Fig. 16.6 (Velocity
auto-correlation function)
The Lennard—Jones system
is simulated for

kpT = 200K and different
values of the density

n* = 0.12(a), 0.18 (b),
0.32(c), 0.62(d). The
velocity auto-correlation
function (full curves) is
averaged over 20 trajectories
and fitted by an exponential
function (dashed curves)

velocity autocorrelation function

time t-t, (ps)

decays as a function of the delay time ¢ — #y due to collisions of the particles. In a
stationary state it does not depend on the initial time #y. Integration leads to the mean
square displacement (Fig. 16.6)

Ax2(1) = < (x(1) — x(t))* > . (16.27)

In the absence of collisions the mean square displacement grows with (+ — #;)?,
representing a ballistic type of motion. Collisions lead to a diffusive kind of motion
where the mean square displacement grows only linearly with time. The transition
between this two types of motion can be analyzed within the model of Brownian
motion [210] where the collisions are replaced by a fluctuating random force I"(¢)
and a damping constant .

The equation of motion in one dimension is

0 +v =T (16.28)
with
<TI0 > =0 (16.29)
“rore)>=2%Ts5q . (16.30)
m

The velocity correlation decays exponentially
kT _ /|t —to]
<v(v(ty) >= ——e "0 (16.31)
m

with the average velocity square given by

ksT Evin
B _ = Bkin = (16.32)

m
m 2

<2 >=C(p) =
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and the integral of the correlation function equals

e kT
/ C(ydt = —. (16.33)
T Fym

The average of Ax? is

< (x(1) — x(19)? > = (1 — e =10y, (16.34)

ks T 2y T
St — 1) — —
mry mry

For small time differences ¢ — £y the motion is ballistic with the thermal velocity
2 kT 2 2 2
<@x@)—x{y)) > — @t —1t)" =< v”>({—1)". (16.35)
m

For large time differences diffusive motion emerges with

2kpT

< (x(t) — x(tp)? >~ . (t —to) = 2D(t — 1p) (16.36)

with the diffusion constant given by the Einstein relation

kT
D=——. (16.37)
mry
For a three-dimensional simulation the Cartesian components of the position or
velocity vector add up independently. The diffusion coefficient can be determined
from

1 1) — x(tp))?
D=1 jm =0 = x0)” > (16.38)
6 t—o0 t—1ty
or, alternatively from (16.33) [163]
1 oo
D= g/ < v()v(ty) > dt. (16.39)
)

This equation is more generally valid also outside the Brownian limit (Green—Kubo
formula). The Brownian model represents the simulation data quite well at low parti-
cle densities (Figs. 16.6 and 16.7). For higher densities the velocity auto-correlation
function shows a very rapid decay followed by a more or less structured tail. [163,
211, 212]
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Fig. 16.7 (Mean square
displacement) The
Lennard—Jones system is
simulated for kg T = 200K
and different values of the
density n* = 0.12 (a), 0.18 (b),
0.32(c), 0.62 (d). The mean
square displacement (full
curves) is averaged over 20
trajectories and fitted by a
linear function (dashed lines)
fort —tp > 1.5ps

16.2 Monte-Carlo Simulation

mean square displacement (Az)

140

16 Thermodynamic Systems

time t-t, (ps)

The basic principles of Monte Carlo simulations are discussed in Chap.9. Here
we will apply the Metropolis algorithm to simulate the Ising model in one or two
dimensions. The Ising model [213, 214] is primarily a model for the phase transition
of a ferromagnetic system. However, it has further applications for instance for a
polymer under the influence of an external force or protonation equilibria in proteins.

16.2.1 One-Dimensional Ising Model

We consider a chain consisting of N spins which can be either up (S; = 1) or down
(S; = —1). The total energy in a magnetic field is (Fig. 16.8)

N

H=-MB=-BY us

i=1

and the average magnetic moment of one spin is

oHB/KT _ o—pB/KT

<M >=

H GiBIRT J —nB/kT

tanh(*2)
= ann(——-—-).
HEeT

(16.40)

(16.41)

If interaction between neighboring spins is included, the energy of a configuration

(81 ---Sy) becomes

N N—-1
H = —/.LBZSI' —-J ZSiSi+1-
i=1 i=l1

(16.42)
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Bi

S.=*+1

\ \
U NS

J -J

Fig. 16.8 (Ising model) N spins can be up or down. The interaction with the magnetic field is
—pBS;, the interaction between nearest neighbors is —J S; S
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average magnetization
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temperature
Fig. 16.9 (Numerical simulation of the 1-dimensional Ising model) The average magnetization

per spin is calculated from a MC simulation (circles) and compared to the exact solution (16.43).
Parameters are uB = —5and J = -2

The 1-dimensional model can be solved analytically [208]. In the limit N — oo the
magnetization is

sinh(%

<M>=pu .
. 12 uB
\/smh (%) + e¥/hT

(16.43)

The numerical simulation (Fig. 16.9) starts either with the ordered state S; = 1 or
with a random configuration. New configurations are generated with the Metropolis
method as follows:
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Table 16.1 Transition probabilities for a 3-spin system (p = 1/3)

+++ ++— +—+ +-— | —++ —+- -——+ |-
+++ 0 p p 0 p 0 0 0
++— p 0 0 p 0 p 0 0
+—+ p 0 0 p 0 0 p 0
+—= 0 p p 0 0 0 0 p
—++ p 0 0 0 0 p P 0
—+— 0 p 0 0 p 0 0 p
-—+ |0 0 p 0 p 0 0 p
- 0 0 0 P 0 p P 0

e flip one randomly chosen spin S; and calculate the energy change due to the
change AS; = (—S8;) — S; = -2;

AE = —puBAS; — JAS;(Siv1 + Si—1) =2uBS; +2J8; (Siv1 + Si—1) -
(16.44)

e if AE <0 then accept the flip, otherwise accept it with a probability of
P — o~ AE/KT

As a simple example consider N=3 spins which have 8 possible configurations. The
probabilities of the trial step 7;_, ; are shown in Table 16.1. The table is symmetric
and all configurations are connected.

16.2.2 Two-Dimensional Ising Model

For dimension d > 1 the Ising model behaves qualitatively different as a phase tran-
sition appears. For B = 0 (Fig. 16.10) the 2-dimensional Ising-model with 4 nearest
neighbors can be solved analytically [215, 216]. The magnetization disappears above
the critical temperature 7., which is given by

J
kT,

1 1
. SR L 16.45
2 n(v2-1) 227 (16.45)

Below T, the average magnetization is given by

1

1 8
M>={1-——+—1] . 16.46
<M= ( Smh4(%)) (16.46)

30r try one spin after the other.
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Fig. 16.10 (Numerical 16
simulation of the

2-dimensional Ising model)

The average magnetization 05
per spin is calculated for

B = 0 from a MC simulation
(circles) and compared to
(16.46)

magnetisation
f=}

0.5

Problems

Problem 16.1 Lennard-Jones Fluid

In this computer experiment a Lennard—Jones fluid is simulated. The pressure is cal-
culated from the average transfer of momentum (16.12) and compared with expres-
sion (16.19).

e Equilibrate the system and observe how the distribution of squared velocities
approaches a Maxwell distribution.

e Equilibrate the system for different values of temperature and volume and inves-
tigate the relation between pV /N and kT.

e observe the radial distribution function for different values of temperature and
densities. Try to locate phase transitions.

e determine the decay time of the velocity correlation function and compare with the
behavior of the mean square displacement which shows a transition from ballistic
to diffusive motion.

Problem 16.2 One-Dimensional Ising Model

In this computer experiment we simulate a linear chain of N = 500 spins with peri-

odic boundaries and interaction between nearest neighbors only. We go along the

chain and try to flip one spin after the other according to the Metropolis method.
After trying to flip the last spin Sy the total magnetization

N
M= z S; (16.47)
i=1
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Fig. 16.11 Two state model

-:--

Ly -

is calculated. It is averaged over 500 such cycles and then compared graphically with
the analytical solution for the infinite chain (16.43). Temperature and magnetic field
can be varied.

Problem 16.3 Two-State Model for a Polymer

Consider a polymer (Fig. 16.11) consisting of N units which can be in two states
S; = 41 or S; = —1 with corresponding lengths / and /_. The interaction between
neighboring units takes one of the values w,, wy_, w__. Under the influence of
an external force x the energy of the polymer is

E= —nZl(Si)+Zw(Si,S,-+1). (16.48)

This model is isomorphic to the one-dimensional Ising model.

I_+1 -1
E=—rN—— K= >S (16.49)
Wy — Wy Wy —W_—
_ S; S;
+> (w+ + 5 - 5 1
__ —2w,_
PSSl s, S,-+1) (16.50)
I_+1
= kN ; * 4 Nw,_
_ l+ 2l_M—|— Wy w__M
Wiy +w__ —2w4_
+ > i ZSiSi+1~
(16.51)

Comparison with (16.42) shows the correspondence

U)++ + w__ — 2w_|__

2

l+ —1_ Wyt — W
—uB =— 16.53
I K 2 + 5 ( )

—J=

(16.52)
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Lo+l 1, —1
L:Zl(S,»):NJr—; +*2 M. (16.54)

In this computer experiment we simulate a linear chain of N = 20 units with
periodic boundaries and nearest neighbor interaction as in the previous problem.

The fluctuations of the chain conformation are shown graphically and the mag-
netization of the isomorphic Ising model is compared with the analytical expression
for the infinite system (16.43). Temperature and magnetic field can be varied as well
as the coupling J. For negative J the anti-ferromagnetic state becomes stable at low
magnetic field strengths.

Problem 16.4 Two-Dimensional Ising Model

In this computer experiment a 200 x 200 square lattice with periodic boundaries and
interaction with the 4 nearest neighbors is simulated. The fluctuations of the spins can
be observed. At low temperatures ordered domains with parallel spin appear. The
average magnetization is compared with the analytical expression for the infinite
system (16.46).




Chapter 17
Random Walk and Brownian Motion

Random walk processes are an important class of stochastic processes. They have
many applications in physics, computer science, ecology, economics and other fields.
A random walk [217] is a sequence of successive random steps. In this chapter we
study Markovian [218, 219]" discrete time* models. In one dimension the position of
the walker after n steps approaches a Gaussian distribution, which does not depend
on the distribution of the single steps. This follows from the central limit theorem and
can be checked in a computer experiment. A 3-dimensional random walk provides
a simple statistical model for the configuration of a biopolymer, the so called freely
Jjointed chain model. In a computer experiment we generate random structures and
calculate the gyration tensor, an experimentally observable quantity, which gives
information on the shape of a polymer. Simulation of the dynamics is simplified if the
fixed length segments of the freely jointed chain are replaced by Hookean springs.
This is utilized in a computer experiment to study the dependence of the polymer
extension on an applied external force (this effect is known as entropic elasticity).
The random motion of a heavy particle in a bath of light particles, known as Brownian
motion, can be described by Langevin dynamics, which replace the collisions with
the light particles by an average friction force proportional to the velocity and a
randomly fluctuating force with zero mean and infinitely short correlation time. In a
computer experiment we study Brownian motion in a harmonic potential.

17.1 Markovian Discrete Time Models

The time evolution of a system is described in terms of an N-dimensional vector
r(¢), which can be for instance the position of a molecule in a liquid, or the price
of a fluctuating stock. At discrete times #, = nAt the position changes suddenly
(Fig.17.1)

r(fu1) = r(ty) + Ar, (17.1)

I Different steps are independent.
2 A special case of the more general continuous time random walk with a waiting time distribution
of P(1) = 0(T — Ar).

© Springer International Publishing AG 2017 385
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Fig. 17.1 Discrete time ri
random walk

Ary )

-€-----

Ary

where the steps are distributed according to the probability distribution®
P(Ar, =b) =f(b). (17.2)

The probability of reaching the position R after n + 1 steps obeys the equation
Py (R) = P (r(tp+1) = R)

= /dNbP,,(R —b)f (b). (17.3)

17.2 Random Walk in One Dimension

Consider a random walk in one dimension. We apply the central limit theorem to
calculate the probability distribution of the position r, after n steps. The first two
moments and the standard deviation of the step distribution are

b= /dbbf(b) b= /dbbzf(b) oy =\ b2 —b . (17.4)
Hence the normalized quantity
Ax;—b
&= (17.5)
Op

3General random walk processes are characterized by a distribution function P(R, R’). Here we
consider only correlated processes for which P(R, R") = P(R’ — R).
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is a random variable with zero average and unit standard deviation. The distribution
function of the new random variable

_G+o+-HE  m—nb

n — = 17.6
! Ji oo o
approaches a normal distribution for large n
Fn) — e (17.7)
' 2
and finally from
dr,
Sf(ro)dr, = f(n)dn. = f(n,)
O’bﬁ
we have
f(ra) 1 (ta = 1Y (17.8)
Tp) = ———eXpy———— 1 - .
N 2mnoy, P 2no;}

The position of the walker after n steps obeys approximately a Gaussian distribution
centered at 7,, = nb with a standard deviation of

oy, = oy, (17.9)

17.2.1 Random Walk with Constant Step Size

In the following we consider the classical example of a 1-dimensional random walk

process with constant step size. At time 7, the walker takes a step of length Ax to the

left with probability p or to the right with probability ¢ = 1 — p (Figs. 17.2, 17.3).
The corresponding step size distribution function is

f(b) = pd(b+ Ax) + go(b — Ax) (17.10)
with the first two moments
b=(q—pAx b= Ax’. (17.11)

Let the walker start at r(fp) = 0. The probability P,(m) of reaching position mAx
after n steps obeys the recursion

Ppy1(m) = pPy(m+ 1) + gPy(m — 1) (17.12)
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400

200

-200

-400 L 1 L 1 L 1 L 1 L

0 20000 40000 60000 80000 100000
steps

Fig.17.2 (Random walk with constant step size) The figure shows the position r, for three different

1-dimensional random walks with step size Ax = *1. The dashed curves show the width £0 =

+./n of the Gaussian approximation (17.8)

Fig. 17.3 Random walk p q

with constant step size m /—\‘

r()-Ax r(t) r(t)+Ax

y

which obviously leads to a binomial distribution. From the expansion of

n __ n m _n—m
P +q) —Z(m)p q (17.13)
we see that
P(n —2m) = (Z)pmq"—m (17.14)
or after substitutionm’ =n —2m = —n,—n+2,...n—2,n:
N n (n—m')/2 _(n+m')/2
P,m') = ((n B m’)/2) q . (17.15)

Since the steps are uncorrelated we easily find the first two moments

o =ZA_xi=nZ:nAx(q—p) (17.16)

i=1
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and

n 2 n n
2= (Z Ax,-) =D AxiAx; = D (Ax;)? = nb? = nAx’. (17.17)
i=1

ij=1 i=1

17.3 The Freely Jointed Chain

We consider a simple statistical model for the conformation of a biopolymer like
DNA or a protein.

The polymer is modeled by a 3-dimensional chain consisting of M units with
constant bond length and arbitrary relative orientation (Fig. 17.4). The configuration
can be described by a point in a 3(M + 1)-dimensional space which is reached after
M steps Ar; = b; of a 3-dimensional random walk with constant step size

M
ry=ro+ » b (17.18)
i=1

17.3.1 Basic Statistic Properties

The M bond vectors
b; =r1; —ri_; (17.19)

have a fixed length |b;| = b and are oriented randomly. The first two moments are

b, =0 b2 =5 (17.20)

Since different units are independent

b;b; = 6; ;b*. (17.21)

Fig. 17.4 Freely jointed

chain with constant bond b
length b
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Obviously the relative position of segment j
J
Rjzl'j—l'()ZZb,'
i=1

has zero mean

J
= E bl =
i=1
and its second moment is

J

7=(2rzn)- 2 m-

k=1

For the end to end distance (Fig.17.5)

M
Ry =ry —ro = E b;
i=1

Fig. 17.5 (Freely jointed
chain) The figure shows a
random 3-dimensional
structure with 1000 segments
visualized as balls (Molden
graphics [220])

(17.22)

(17.23)

(17.24)
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this gives
Ry =0, R}, =Mb. (17.25)

Let us apply the central limit theorem for large M. For the x coordinate of the end to
end vector we have

M
X = Zb,-ex = chos 0. (17.26)
i=1 i

With the help of the averages*
1 27 T
cost; = —/ d(b/ cosf sinfdf =0 (17.27)
471' 0 0
. 1 2 g 5 ) 1
(cos0,)? = — dp | cos™ 0 sinfdf = — (17.28)
47T 0 0 3

we find that the scaled difference

& = /3cosb; (17.29)

has zero mean and unit variance and therefore the sum

X = bj__ \/720059 (17.30)

converges to a normal distribution:

- 1 X2
PX) = W rhi [—7] . (17.31)

Hence

1 V3 3
P(X - X2 17.32
0= i ™|z | e
4For a 1-dimensional polymer cosf; = 0 and (cos#;)> = 1. In two dimensions cosf; =

%fow cosfdf = 0 and (cos6;)? = %fow cos20dl = % To include these cases the factor 3 in
the exponent of (17.33) should be replaced by the dimension d.
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and finally in 3 dimensions
P(Ry) = P(X) P(Y) P(Z)
V27 3,
= exp | — Ry (.
b3/ 2rM)3 2Mb?

17.3.2 Gyration Tensor

For the center of mass

— — 1
R.=0 R=_> > RE;
ij

and since

R;R; = min(i, j) b*

we have

2 M M » (M3

i=1 i=1

The gyration radius [221] is generally defined by

6M

M? M) Mb?

(17.33)

(17.34)

(17.35)

(17.36)

~
~ —

2 6 3
(17.37)
(17.38)
R)—R2 (17.39)

Mb?
N (17.40)
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R, can be also written as

»_[(Lsp_t ). LSS ® R
R = MZR?—W;R,R, —WEE(R,—R,)Z (17.41)

and can be experimentally measured with the help of scattering phenomena. It is
related to the gyration tensor which is defined as

2y = zlvz 2 Ri —R)R; = R)T. (17.42)

Its trace is
tr(2,) = R, (17.43)

and its eigenvalues give us information about the shape of the polymer (Fig. 17.6).

17.3.3 Hookean Spring Model

Simulation of the dynamics of the freely jointed chain is complicated by the
constraints which are implied by the constant chain length. Much simpler is the

V4
A A b A V4

prolate spherical oblate

> y y
X y [
X X

2 2 2 _ 12 2 2

Q7 >> Qyy Q = Qxy Q7 << Qyy

Fig. 17.6 (Gyration tensor) The eigenvalues of the gyration tensor give information on the shape
of the polymer. If the extension is larger (smaller) along one direction than in the perpendicular
plane, one eigenvalue is larger (smaller) than the two other
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o
= 0

Fig. 17.7 Polymer model with Hookean springs

A p(v)

[

—

-b b b

Fig. 17.8 (Distribution of bond vectors) The bond vector distribution for a 1-dimensional chain of
springs has maxima at +b. For large force constants the width of the two peaks becomes small and
the chain of springs resembles a freely jointed chain with constant bond length

simulation of a model which treats the segments as Hookean springs (Fig. 17.7). In
the limit of a large force constant the two models give equivalent results.

We assume that the segments are independent (self crossing is not avoided). Then
for one segment the energy contribution is

f

E = 3 (bl — b)>. (17.44)

If the fluctuations are small
[Ib;| — bl < b (17.45)

then (Fig. 17.8)

2~ b2 (17.46)

Ibil ~b b

N
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and the freely jointed chain model (17.33) gives the entropy as a function of the end
to end vector

V27 3kg . 5
S = —kg In (P(Ry)) = —kg ln(b3 N + S R (17.47)

If one end of the polymer is fixed at rp = 0 and a force k is applied to the other end,
the free energy is given by

3kgT

F=TS— kRy = B
KM= b2

R/%4 — &Ry + const. (17.48)

In thermodynamic equilibrium the free energy is minimal, hence the average exten-
sion is
—  Mp?
M = K
3kgT

(17.49)

This linear behavior is similar to a Hookean spring with an effective force constant

Mb?

= 17.50
3kgT ( )

Jeir

and is only valid for small forces. For large forces the freely jointed chain asymptot-
ically reaches its maximum length of Ry max = Mb, whereas for the chain of springs
Ry — M+ k/f).

17.4 Langevin Dynamics

A heavy particle moving in a bath of much smaller and lighter particles (for
instance atoms and molecules of the air) shows what is known as Brownian motion
[222-224]. Due to collisions with the thermally moving bath particles it experiences
a fluctuating force which drives the particle into a random motion. The French physi-
cist Paul Langevin developed a model to describe this motion without including the
light particles explicitly. The fluctuating force is divided into a macroscopic friction
force proportional to the velocity

Fp = —yv (17.51)
and a randomly fluctuating force with zero mean and infinitely short correlation time

Frona(®) =0 Frung(OF0na (1) = F? 60 - t/)- (17.52)

rand
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The equations of motion for the heavy particle are
d

—X =V
dt

d 1 1
—v=—w+ —Fs(t) - =VUX) (17.53)
dt m m

with the macroscopic friction coefficienty and the potential U (x).

The behavior of the random force can be better understood if we introduce a time
grid t,41 — t, = At and take the limit At — 0. We assume that the random force
has a constant value during each interval

Frona(t) =Fy 1, <1 <1ty (17.54)
and that the values at different intervals are uncorrelated

F.F, = 6,.,F. (17.55)
The auto-correlation function then is given by

_ 0 different intervals
Fran t Fran V) =1 . 17.56
4 () Frana () [ F2  same interval. ( )

Division by At gives a sequence of functions which converges to a delta function in
the limit At — 0

[ —
EFrand(t)Frand(t/) e F,ZL 5(t - t,)- (1757)

Hence we find

P-lp ) (17.58)
n At rand
Within a short time interval Ar — 0 the velocity changes by
1 1
v(t,+ At) = v —yvAt — —VUX) At + —F, At + - - - (17.59)
m m
and taking the square gives

2 2 F2
Vi(tn + A = V2 = 29v? At = SVVUX) At + —VE, At + 2 (A% + -+ . (17.60)
m m m

Hence for the total energy
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E(t, + An = %vz(tn + A + U(x(t, + A1)
= §v2(t,,+At)+U(x)+vVU(x)At+-~- (17.61)
we have
E(t, + A1) = E(t,) — myv* At + vF, At + %(m)2 SR (17.62)

On the average the total energy E should be constant and furthermore in 4 dimensions

ma 4y (17.63)
20 T2 '

Therefore we conclude

— At= 1 =
myv? = 2—F,3 = —F? (17.64)
m

1o T (17.65)

Problems

Problem 17.1 Random Walk in One Dimension

This program generates random walks with (a) fixed step length Ax = +1 or (b)
step length equally distributed over the interval —v/3 < Ax < +/3. It also shows the
variance, which for large number of walks approaches o = /n. See also Fig.17.2

Problem 17.2 Gyration Tensor

The program calculates random walks with M steps of length b. The bond vectors
are generated from M random points e; on the unit sphere as b; = be;. End to end
distance, center of gravity and gyration radius are calculated and can be averaged
over numerous random structures. The gyration tensor (Sect. 17.3.2) is diagonalized
and the ordered eigenvalues are averaged.

Problem 17.3 Brownian Motion in a Harmonic Potential
The program simulates a particle in a 1-dimensional harmonic potential

U(x) = Exz — KX (17.66)
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where « is an external force. We use the improved Euler method (13.36). First the
coordinate and the velocity at mid time are estimated

At At

X (tn + _) = X(tn) + V(tn)_ (1767)
2 2
At At F, At At

V(o 20} = vy — v 2t 4 B AL F A (17.68)
2 2 m 2 m 2

where F, is a random number obeying (17.65). Then the values at 7,,; are
calculated as

X(ty + A1) =x(t,) + v (t,, + %) At (17.69)
A F A

v(t, + At) = v(ty) — YV (tn + —t) At + 2 Ar— ix (t” + —t) At. (17.70)
2 m m 2

Problem 17.4 Force Extension Relation

The program simulates a chain of springs Sect. 17.3.3 with potential energy

U =€Z(|b,~| —b)? — kRy,. (17.71)

The force can be varied and the extension along the force direction is averaged over
numerous time steps.




Chapter 18
Electrostatics

The electrostatic potential ® (r) of a charge distribution p(r) is a solution' of Pois-
son’s equation

AD(r) = —p(r) (18.1)
which, for spatially varying dielectric constant (r) becomes
div(e(r) grad ®@(r)) = —p(r) (18.2)

and, ifmobile charges are taken into account, like for an electrolyte or semiconductor,
turns into the Poisson—Boltzmann equation

div(e(r) grad @ (r)) = —pji(r) — Zn?z,-e e ZieP®/ksT (18.3)

L

In this chapter we discretize the Poisson and the linearized Poisson—Boltzmann
equation by finite volume methods which are applicable even in case of discontin-
uous €. We solve the discretized equations iteratively with the method of successive
over-relaxation. The solvation energy of a charged sphere in a dielectric medium is
calculated to compare the accuracy of several methods. This can be studied also in
a computer experiment.

Since the Green’s function is analytically available for the Poisson and Poisson—
Boltzmann equations, alternatively the method of boundary elements can be applied,
which can reduce the computer time, for instance for solvation models. A computer
experiment simulates a point charge within a spherical cavity and calculates the
solvation energy with the boundary element method.

YThe solution depends on the boundary conditions, which in the simplest case are given by
limjp 00 @(r) = 0.
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18.1 Poisson Equation

From a combination of the basic equations of electrostatics

div D(r) = p(r) (18.4)
D(r) = e(r)E(r) (18.5)
E(r) = —grad &(r) (18.6)

the generalized Poisson equation is obtained

div(e(r) grad®(r)) = —p(r) (18.7)
which can be written in integral form with the help of Gauss’ theorem

fgv dA div(e(r) grad®(r)) = /VdV e(r) grad®(r)) = — /v dV p(r). (18.8)
If e(r) is continuously differentiable, the product rule for differentiation gives

e(r) A®(r) + (grad £(r)) (grad @ (r)) = —p(r) (18.9)

which for constant € simplifies to the Poisson equation

AP (r) = ———. (18.10)

18.1.1 Homogeneous Dielectric Medium

We begin with the simplest case of a dielectric medium with constant € and solve
(18.10) numerically. We use a finite volume method (Sect. 12.3) which corresponds
to a finite element method with piecewise constant test functions. The integration
volume is divided into small cubes V;; which are centered at the grid points (Fig. 18.1)

rij = (hi, hj, hk). (18.11)

Integration of (18.10) over the control volume Vj; around r;; gives

1 ;
/dVdiV grad @ =% grad @dA = —-/ dv p(r) = _ Qi (18.12)
Vv A% g Jv IS
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Fig. 18.1 (Finite volume for z
the Poisson equation) The e}
control volume is a small - h
cube centered at a grid point T
(full circle) y o E__‘____ o
e
—"h
ho

Qij is the total charge in the control volume. The flux integral is approximated by
(12.85)

oD oD
fi’av grad @ dA = —h? (a(xi—i—l/z,)’j, %) — a(xi—l/zd’j, %)

oD oD oD oD
+8—y(Xin+l/z, %) — afy(ijfl/z, %) + a—z(x,-,yj, Lt1/2) = 87("1‘%‘7 &=1p2) ) -
(18.13)

The derivatives are approximated by symmetric differences

?{ grad @ dA = —h {(D (xit1, yj, 20) — D (i, ¥y, 7))
av

— (@i, yjs z) — P(xim1, )y %))

+ (P Oy yjs1 ) — P (X, Yy, 7))

— (@i, yjs 2) — P Xy Yj—1, %))

+ (P, vy 1) — P (X Yy 7))

— (P i,y ) — (i vy 1) }

= —h (D1, Y}, 26) + P Xit1, js 2%) + P (i, yjm1, 2%) + P (i, Vi1, 26)

+ D (xi, Yy, 2k-1) + P, Yy 2kg1) — 6P (1, Vj, %)) (18.14)

which coincides with the simplest discretization of the second derivatives (3.40).
Finally we obtain the discretized Poisson equation in the more compact form

Oijk

6
2 @i dry) = D)) = ——

s=1

(18.15)

which involves an average over the 6 neighboring cells

dr; = (—h,0,0) ...drs = (0,0, h). (18.16)
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18.1.2 Numerical Methods for the Poisson Equation

Equation (18.15) is a system of linear equations with very large dimension (for a
erid with 100 x 100 x 100 points the dimension of the matrix is 10° x 10° !). Our
computer experiments use the iterative method (Sect.5.5)

new 1 0 Ql"
D"V (ryjp) = ¢ (qu “(ry + dry) + 8—2") (18.17)

Jacobi’s method (5.121 on p. 80) makes all the changes in one step whereas
the Gauss—Seidel method (5.124 on p. 80) makes one change after the other. The
chessboard (or black red method) divides the grid into two subgrids (withi +j + k
even or odd) which are treated subsequently. The vector dr; connects points of
different subgrids. Therefore it is not necessary to store intermediate values like for
the Gauss—Seidel method.

Convergence can be improved with the method of successive over-relaxation
(SOR, 5.128 on p. 81) using a mixture of old and new values

D" (i) = (1 — W)@ (ry) + w% (Z D (ryj + dry) + %) (18.18)
with the relaxation parameter w. For | < w < 2 convergence is faster than forw = 1.
The optimum choice of w for the Poisson problem in any dimension is discussed in
[225].

Convergence can be further improved by multigrid methods [226, 227]. Error
components with short wavelengths are strongly damped during a few iterations
whereas it takes a very large number of iterations to remove the long wavelength
components. But here a coarser grid is sufficient and reduces computing time. After

a few iterations a first approximation @, is obtained with the finite residual
1
r=A®; 4+ —p. (18.19)
€

Then more iterations on a coarser grid are made to find an approximate solution @,
of the equation

1
AP = —r = ——p— AD,. (18.20)
g

The new residual is

mn=AD;, +ry. (18.21)
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Function values of @, on the finer grid are obtained by interpolation and finally the
sum @; + &, provides an improved approximation to the solution since

1 1
A(¢1+¢2)=—gp+r1+(r2—r1)=—gp+r2- (18.22)

This method can be extended to a hierarchy of many grids.

Alternatively, the Poisson equation can be solved non-iteratively with pseudospec-
tral methods [228, 229]. For instance, if the boundary is the surface of a cube, eigen-
functions of the Laplacian are for homogeneous boundary conditions (@ = 0) given
by

Nk (r) = sin(k.x) sin(kyy) sin(k;z) (18.23)
and for no-flow boundary conditions (8% ® =0) by
N (r) = cos(k,x) cos(k,y) cos(k;z) (18.24)

which can be used as expansion functions for the potential

& (r) = Z DNk (T). (18.25)
Ky ky K

Introducing collocation points r; the condition on the residual becomes

1 1
0=Ad(r) + gp(rj) = Z K> PNy (1)) + gp(r,-) (18.26)
ke ky,k;

which can be inverted with an inverse discrete sine transformation, (respectively an
inverse discrete cosine transformation for no-flux boundary conditions) to obtain the
Fourier components of the potential. Another discrete sine (or cosine) transformation
gives the potential in real space.

18.1.3 Charged Sphere

As a simple example we consider a sphere of radius R with a homogeneous charge
density of

(18.27)
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Fig. 18.2 (Discretization of the discontinuous charge density) Left the most precise method divides
the control volumes at the boundary into two irregularly shaped parts. Middle assigning either the
value pg or zero retains the discontinuity but changes the shape of the boundary. Right averaging
over a control volume smears out the discontinuous transition

The exact potential is given by

2
O = —— 4+ ¢ (1 r) for r < R

4megR | 8meoR . R?
O(r)= —— forr>R. (18.28)
dmegr

The charge density (18.27) is discontinuous at the surface of the sphere. Integration
over a control volume smears out this discontinuity which affects the potential values
around the boundary (Fig. 18.2). Alternatively we could assign the value p(r;;;) which
is either po (18.27) or zero to each control volume which retains a sharp transition
but changes the shape of the boundary surface and does not conserve the total charge.
This approach was discussed in the first edition of this book in connection with a
finite differences method. The most precise but also complicated method divides the
control volumes at the boundary into two irregularly shaped parts [230, 231].

Initial guess as well as boundary values are taken from

e
1)) R — 18.2
o(r) 4mey max(r, h) ( 7

which provides proper boundary values but is far from the final solution inside the
sphere. The interaction energy is given by (Sect. 18.5)

2

1 3 e
E,;, = — d(r)dV = — .
=z /V p(r)®(r) 20 720k

(18.30)

Calculated potential (Fig. 18.3) and interaction energy (Figs. 18.4, 18.5) converge
rapidly. The optimum relaxation parameter is around w ~ 1.9.
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Fig. 18.3 (Electrostatic
potential of a charged
sphere) A charged sphere is
simulated with radius
R=0.25anda
homogeneous charge density
p = e-3/4mR>. The grid
consists of 2003 points with
a spacing of i = 0.025. The
calculated potential (circles)
is compared to the exact
solution (18.28, solid curve),
the initial guess is shown by
the dashed line

Fig. 18.4 (Influence of the
relaxation parameter) The
convergence of the
interaction energy (18.30,
which has a value of
34.56¢eV for this example) is
studied as a function of the
relaxation parameter w. The
optimum value is around

w ~ 1.9. For w > 2 there is
no convergence. The dashed
line shows the exact value

Fig. 18.5 (Influence of grid
size) The convergence of the
interaction energy (18.30)
and the central potential
value are studied as a
function of grid size. The
dashed lines show the exact
values
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Fig. 18.6 Face center of the
control volume

18 Electrostatics

T (i,j,K)’
drg

18.1.4 Variable

In the framework of the finite volume method we take the average over a control

volume to discretize £2 and @

1
Eijk = E(ryjp) = F/

Vijk

dV =(r)
— 1
¢ijk = @(I',jk) = }?/ av ¢(l’)
fi

Integration of (18.7) gives

/ dV div (e(r) grad @ (r)) =% e(r) grad @dA = —/ dV p(r)
14 v 14

The surface integral is

j{ dA ¢ grad® = Z/
ov

0
dAs(r) —@.
A 8}1

sefaces ™
Applying the midpoint rule (12.77) we find (Fig. 18.6)
6

1 ) 1
dA do ~ K> i+ —dry ) —@ (v + =dr, ) .
j{)v - Zg(r"”z r)@n (r”‘+2 r)

r=1

2But see Sect. 18.1.5 for the case of discontinuous &.

(18.31)

(18.32)

= —QOjjk-

(18.33)

(18.34)

(18.35)
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The potential @ as well as the product s(r)%—f are continuous, therefore we make
the approximation [230]

1 o 1 _ @ (v + idry) — D ()
€ (r[jk + Edrx) o (r[jk + zdl‘s) = E(rj) - %
D (rj + dry) — @ (g + 1dr,)

= E(rj +dry)

i (18.36)
2

__ From this equation the unknown potential value on the face of the control volume
@ (ry + 5dr,) (Fig. 18.6) can be calculated

— 1 E(ri) D (rj) + E(ryj + dry) D (ry + dr
5 (rijk . _drs) _ B @) + By + dry) S (ry + dr) (18.37)
2 E(rj) + E(ry + dry)

which gives

1 7] 1 28(r;ik)E(rji + dry) @ (ryj + drg) — @ (ry;
c (rijk + Edrs> %@ (rijk + Edrs) _ £( l]k)g( ijk + 5) (rl]k + drs) (rl]k).

() +E(r +dr) h

(18.38)

Finally we obtain the discretized equation
6 A= _
28(rjj + dry)e(rip) — —
—Qju=h)y — ———— (P (rj + dry) — P (rjp)) (18.39)
/ ; E(rjx + dry) + E(ry) ! !
which can be solved iteratively according to
2e (rij+dr)e®ii) g old (4. Qijk
e,y = 2= e O Eik AT (18.40)
ijk) = z 2¢e (v +dry)e(ri) : :

e(ryctdry)+e(r)

18.1.5 Discontinuous €

For practical applications models are often used with piecewise constant €. A simple
example is the solvation of a charged molecule in a dielectric medium (Fig. 18.9).
Here ¢ = ¢( within the molecule and € = £y within the medium. At the boundary
€ is discontinuous. In (18.40) the discontinuity is replaced by a smooth transition
between the two values of ¢ (Fig. 18.7).

If the discontinuity of ¢ is inside a control volume Vi then (18.31) takes the
arithmetic average
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Fig. 18.7 (Transition of ¢) €

The discontinuous &(r)

(black line) is averaged over

the control volumes to obtain e
the discretized values &

(full circles). @)

Equation (18.40) takes the O

harmonic average over two —e——
neighbor cells (open circles)
and replaces the
discontinuity by a smooth
transition over a distance of
about i

Fig. 18.8 Average of € over e v, ViV,
a control volume v i
) : €
g, V,
€
N € )
SR -
| |
|
)
_ 1 2
gk = V1 + Vil (18.41)

which corresponds to the parallel connection of two capacities (Fig. 18.8). Depending
on geometry, a serial connection may be more appropriate which corresponds to the
weighted harmonic average

1

(-1 2 _—-1°
Viger + Ve

T = (18.42)

18.1.6 Solvation Energy of a Charged Sphere

We consider again a charged sphere, which is now embedded in a dielectric medium
(Fig. 18.9) with relative dielectric constant ;.

For a spherically symmetrical problem (18.7) can be solved by application of
Gauss’s theorem
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Fig. 18.9 (Solvation of a e=g,
charged sphere in a dielectric _
medium) Charge density and p=0
dielectric constant are
discontinuous at the surface
of the sphere
2 do ' N2 g
drrce(r)— = —4nw [ p(r)r-dr = —q(r) (18.43)
dr 0
P(r)=— / o _ + @(0). (18.44)
o 4mrie(r)
For the charged sphere we find
_ Qr’/R® forr <R
q(r) = [ Qforr >R (18.45)
®(r) Q o0 f R (18.46)
r)=-———-— orr < .
4meoR3 2
D(r) Q + @) + Q ! ! fi R (18.47)
r)=———— - — = orr > R. .
8meoR 4meger \r R
The constant @ (0) is chosen to give vanishing potential at infinity
®(0) = Q Q . (18.48)
47T50€1R 87T€QR
The interaction energy is
1R *(5
Epy = —/ drrtdr p® (r) = M (18.49)
2 Jo 40mepeR

Numerical results for ¢ = 4 are shown in Fig. 18.10.

18.1.7 The Shifted Grid Method

An alternative approach uses a different grid for € which is shifted by #/2 in all
directions (Fig. 18.11) [232] or, more generally, a dual grid (12.74).

Eijk = Eig1p, jpi/ak41a)- (18.50)
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Fig. 18.10 (Charged sphere
in a dielectric medium)
Numerical results for e; = 4
outside the sphere and 2003
grid points (circles) are
compared to the exact
solution (18.46,18.47, solid
curves)

Fig. 18.11 (Shifted grid
method) A different grid is
used for the discretization of
€ which is shifted by #/2 in
all directions

potential @ (V)

50

18 Electrostatics

€

The value of ¢ has to be averaged over four neighboring cells to obtain the discretized

equation

Oiji
o

N

oP
= Z€(l’ijk + dl‘s)% (rijx + dry)

_ Dijir1 — Pijk €ijk + Eij—1k €1k + Eim1j-1k

h

4

Dijk—1— Pijk €ijk—1 + Eij—1k—1 + Eimljk—1 T Eim1j-1k-1

* h

4

n Div1jk — Pijk Eijk +€ij—1k +Eijk—1 + Eij—14-1

h

4
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Fig. 18.12 (Comparison of 40
numerical errors) The
Coulomb interaction of a
charged sphere is calculated
with several methods for
1003 grid points. circles
(18.40, € averaged)
diamonds (18.40, £ 7!
averaged) squares (18.51,

€ averaged), triangles (18.51,
e~ ! averaged), solid curve
analytical solution (18.49)

30

20

10

Coulomb interaction (eV)

. D1k — Pijk€itjk + Eim1j—1k T Eim1jk=1 + i1 j—1,k—1

h 4
D1k — Pijk ik T Eim1jk T Eijik—1 T Eim1jk—1
h 4
n ¢i,,j—1,kh_ Djjk Eij—1k + Eimtj—1k + 6;,171&71 + Eis1j-1k-1 . (18.51)

The shifted-grid method is especially useful if € changes at planar interfaces.
Numerical results of several methods are compared in Fig. 18.12.

18.2 Poisson-Boltzmann Equation

Electrostatic interactions are very important in molecular physics. Bio-molecules
are usually embedded in an environment which is polarizable and contains mobile
charges (Nat, K™, Mg, CI—---).

We divide the charge density formally into a fixed and a mobile part

p(r) = prix(X) + Pmobite (). (18.52)
The fixed part represents, for instance, the charge distribution of a protein molecule
which, neglecting polarization effects, is a given quantity and provides the inhomo-

geneity of the equation. The mobile part, on the other hand, represents the sum of all
mobile charges (e is the elementary charge and Z; the charge number of ion species i)

Pmobite () = D Zie ni(r) (18.53)
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which move around until an equilibrium is reached which is determined by the mutual
interaction of the ions. The famous Debye—Huckel [233] and Gouy—Chapman models
[234, 235] assume that the electrostatic interaction

U(r) = Zied(r) (18.54)
is dominant and the density of the ions #; is given by a Boltzmann-distribution

ni(r) = nVe 4ed /T, (18.55)

The potential @ (r) has to be calculated in a self consistent way together with the
density of mobile charges. The charge density of the free ions is

Pumonite(¥) = D ni"eZie #e? /T (18.56)

1

and the Poisson equation (18.7) turns into the Poisson—Boltzmann equation [236]

div(z(r) grad® (r)) + > nPeZie 4P/ = —pg (r). (18.57)

L

18.2.1 Linearization of the Poisson—Boltzmann Equation

For small ion concentrations the exponential can be expanded

Zied 1 (Zied\*
~Zie® kT o, | _ 4 Y e 18.58
¢ T |2 ( kT ) + (18.38)

For a neutral system

> nZe=0 (18.59)

and the linearized Poisson—Boltzmann-equation is obtained:

722
div(e(r) grad @ (r)) — n§°>k'—T O(r) = —pjr. (18.60)
. B
With
e(r) = gog,(r) (18.61)

and the definition
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2

2 ¢ 0) 2
A= T 2.1, (18.62)
we have finally
. » 1
div(e,(r) grad &(r)) —,k°P = ——p. (18.63)
€0

For a charged sphere with radius @ embedded in a homogeneous medium the solution
of (18.63) is given by

A e et
D =—e" A= . (18.64)
r drepe, 1 + ka

The potential is shielded by the ions. Its range is of the order Apeyye = 1/k (the
so-called Debye length).

18.2.2 Discretization of the Linearized Poisson Boltzmann
Equation

To solve (18.63) the discrete equation (18.39) is generalized to [237]

2¢e,(rj + drg)e,(ri))
e (T + dr) + ,(Tjr))

(@ (rj + dry) — D (rj))

— e, () K ()R D (i) = —f—j‘. (18.65)
0

If ¢ is constant then we iterate

Qijk Id (4.
v gy o Do T 2P e
v 6 + h2K2(ry)

(18.66)

18.3 Boundary Element Method for the Poisson Equation

Often continuum models are used to describe the solvation of a subsystem which is
treated with a high accuracy method. The polarization of the surrounding solvent or
protein is described by its dielectric constant € and the subsystem is placed inside a
cavity with € = ¢ (Fig. 18.13). Instead of solving the Poisson equation for a large
solvent volume another kind of method is often used which replaces the polarization
of the medium by a distribution of charges over the boundary surface.
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Fig. 18.13 Cavity ina
dielectric medium dA

In the following we consider model systems which are composed of two spatial
regions:

e the outer region is filled with a dielectric medium (¢) and contains no free charges
e the inner region (“Cavity”) contains a charge distribution p(r) and its dielectric
constant is € = &.

18.3.1 Integral Equations for the Potential

Starting from the Poisson equation
div(e(r)grad® (r)) = —p(r) (18.67)

we will derive some useful integral equations in the following. First we apply Gauss’s
theorem to the expression [150]

div[G(r — r')e(r)grad(® (r)) — ®(r)e(r)grad(G(r — r'))]
= —p()G(r —1r') — ®(r)e(r)divgrad(G(r — r')) — @ (r)grade(r)grad(G(r — r'))
(18.68)

with the yet undetermined function G (r — r’). Integration over a volume V gives

— / dV (p(r)G(r —r') + & (r)e(r)divgrad(G(r — r'))
\%4
+@ (r)grade(r)grad(G(r — r')))

- f dA (G(r e L @) — emem) (G- r’))) . (18.69)
v on on

Now choose G as the fundamental solution of the Poisson equation
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Fig. 18.14 Discontinuity at
the cavity boundary

1
Gor—-r'y=——— 18.70
o —r) = (18.70)
which obeys
div gradGy = 6(r — r') (18.71)
to obtain the following integral equation for the potential:
, p(r) 1 1
D))= | dV—— 4+ — [ dVD(r)grade(r)grad
v A4mr—r/| 4m Jy r —r/|
1 1 0 0 1
- — dA| ——ec(m)— (@) +2@Mec(m)— | ———) ). (18.72)
41 Jav r —r'| on on \Ir — 1|

First consider as the integration volume a sphere with increasing radius. Then the
surface integral vanishes for infinite radius (¢ — 0 at large distances) [150].

The gradient of e(r) is nonzero only on the boundary surface (Fig. 18.14) of the
cavity and with the limiting procedure (d — 0)

61—1

grade(r)dV =n eodV =dAn(e; — ey

we obtain

N p(r) (e1 — Deo o 1
Q(r) = =) /Cm)clv47r|r_r/I + pary Squﬁ(r)an P (18.73)

This equation allows to calculate the potential inside and outside the cavity from
the given charge density and the potential at the boundary.
Next we apply (18.72) to the cavity volume (where € = ¢;) and obtain

p(r)
(1) = / av .
v 0
1

1j{dAd§()a : 0 g(r) (18.74)
ar ST o e =) T e—vjon ") '
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From comparison with (18.73) we have

1 0 g 1
j{dA——‘Pin(l‘) = € ]{dA@n(l‘)——
s |r—r/|0n < onlr—r|

and the potential can be alternatively calculated from the values of its normal gradient
at the boundary

1
L o (1-2)e 1o
Oy = A T o, ().
)= /cuvdv47r|r—r’|+ 4re(r)) 7€d e 1| on o ®
(18.75)

This equation can be interpreted as the potential generated by the charge density p
plus an additional surface charge density

o(r) = (1 - i) 2o m (18.76)
€1 on

Integration over the volume outside the cavity (where € = € ¢) gives the following
expression for the potential:

Do (r') = ! j{dA Do (1) 0 _1 _ 0 Dy (1) (18.77)
T A J “onr—v| jr—r|on M) '
At the boundary the potential is continuous
Pour(r) = Pip(r) T €A (18.78)

whereas the normal derivative (hence the normal component of the electric field) has

a discontinuity

8¢0u1‘ _ acpin
on on

€1 (18.79)

18.3.2 Calculation of the Boundary Potential

For a numerical treatment the boundary surface is approximated by a finite set of
small surface elements S;,i = 1---N centered at r; with an area A; and normal
vector n; (Fig. 18.15). (We assume planar elements in the following, the curvature
leads to higher order corrections).

The corresponding values of the potential and its normal derivative are denoted
as &; = @(r;) and % = n; grad® (r;). At a point rji close to the element S; we
obtain the following approximate equations:




18.3 Boundary Element Method for the Poisson Equation 417

Fig. 18.15 Representation

of the boundary by surface .
elements
ouy) = [av L0
J v 4mlr —r; |eo
1 0 1 545, in
R ®; b dA — + — 18.80
47 % 6l’l|l'—l'~7| 47 X %, |r_r | ( )
8¢I out
@, (r") = @,
) = Z ]{ 6n|r—r 47TZ ]{ |r—r+|
(18.81)

These two equations can be combined to obtain a system of equations for the potential
values only. To that end we approach the boundary symmetrically with rf =r;%dn;.
Under this circumstance

1 1
j{dA : :f{ dA _
0 1 0 1
anl ——_baaZ
7& on|r—rf| fi on|r—ry|
0 1 0 1
j{dA——+ =]§ dA < =t (18.82)
Si On |r_rj| S; On |r_rj|

and we find

(1+el><bj=/dv po)
|4

47T60|I' — 1

Z(l )¢f S )qu{dAa !

- _ ¢ _ c
! on |r — r;|  4m ! 8n|r—r|
(18.83)
The integrals for i=# j can be approximated by

0 1 1
]{ dA — — = A;n;grad,———. (18.84)

onlr—r;| Ir; — 1

The second integral has a simple geometrical interpretation (Fig. 18.16).
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Fig. 18.16 Projection of the dA
surface element ‘ ,

1
[r— r| T =P |r r\

with unit radius. The integral fs, dA grad

Since grad—— the area element dA is projected onto a sphere

o — is given by the solid angle of S;
with respect to . For r' — r; from inside thlS is Just minus half of the full space

angle of 4. Thus we have

(1+61)¢,~=/de
v 47T|I‘—I'j|€0
1
——Z(l 61)Q§A T |+ (l+61)¢ (18.85)
ni [r; —x;
or
2 1 -1 o 1
@) = /de S0 AL (1886)
1—|—€1 47T6()|I'—l'j| 2w oy €] +1 8n,- |I‘i —I'j|

This system of equations can be used to calculate the potential on the boundary. The
potential inside the cavity is then given by (18.73). Numerical stability is improved by
a related method which considers the potential gradient along the boundary. Taking
the normal derivative

0
8—”j = njgradrl_i (18.87)

of (18.80, 18.81) gives

i r / _pr)
On;j Pin(r; 8 47T|r—r leo

1 @7{% 5 Lo 8@,,,,}{
4 = “Js Onon; r—r/ | 4m < an] Ir—r;|

(18.88)
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0 ? 1
—— By (1) = @; S
5nj (1)) = Z ]f 8n8nj [r — I‘+|

a®l out %
18.89
s - an |r —r; | ( )
In addition to (18.82) we have now
o? 1 0? 1
dA = ¢ dA _ 18.90
%gi Ondn; v — ;| %gi Ondn; |r —rf| ( )

and the sum of the two equations gives

+ ) o j‘pm,J
1

9 == 0P, 1
S /dV A O Tk
onj \ Jv 4mep|r — 1 47 on |r; —r

HJ
1+ (‘3@1 in (18.91)
27r on .
or finally
0 o 2¢; 0 p(r)
On; T e+ 1 on; Jy 4meplr — 1
1 0D, 0O 1
2 A; — . 18.92
+ 61+IZ on 8nj |I‘,‘—l'j| ( )

In terms of the surface charge density this reads:

I —-ep) p(r) 1 n;(r; —r;)
=2 —n;grad [ dV Vet Bl i I
% 50(1 +e1) e 4meg|r — 1| * 4meg ZU’ "y — rjf3

Hj
(18.93)

This system of linear equations can be solved directly or iteratively (a simple damping

scheme 0, — wo,, + (1 —w)a,, ,, With w ~ 0.6 helps to get rid of oscillations).

From the surface charges 0;A; the potential is obtained with the help of (18.75).
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18.4 Boundary Element Method for the Linearized
Poisson-Boltzmann Equation

We consider now a cavity within an electrolyte. The fundamental solution of the
linear Poisson—Boltzmann equation (18.63)

—k|r—r/|
G.r—-r)=——— (18.94)
4m|r — 1|
obeys
div gradG,(r — ') — K2G.(r —r') = §(r — r'). (18.95)

Inserting into Green’s theorem (18.69) we obtain the potential outside the cavity

B (') = —fdA( ) 0 G(r 1)~ G =) m(r>) (18.96)
S

which can be combined with (18.74, 18.79) to give the following equations [238]

0
(I+eN@) = %dA [fp(r)—(9 (Go —e1Gy) = (Go — GK)—fpm(l‘)]
K on on

+/ Lr)dV (18.97)

av 4megr — 1|
2

d 0
1+ 61)—/951'"(1") = %qu)(r)a on (Go = Gy)

P
j{dA D)5 ( 0 —— Gk) n / Wy (18.98)
€] on' Jeqy 4elr — 1/|

For a set of discrete boundary elements the following equations determine the values
of the potential and its normal derivative at the boundary:

1 + € 8 8
D) a>ijz§dA%<Go IEEDY %@,mfdA(Go — G
Hj Hj
+/Lr)dv (18.99)

4meglr — 1yl

1+¢ O H?
D) 8, lm—z¢ aan,(GO_Gh)

1
—Z—qb,,mfdAi Go— — Gy +3/Ldv. (18.100)
= on on’' €1 on' ) 4dmelr — ;|
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The situation is much more involved than for the simpler Poisson equation (with

x = 0) since the calculation of many integrals including such with singularities is
necessary [238, 239].

18.5 Electrostatic Interaction Energy (Onsager Model)

A very important quantity in molecular physics is the electrostatic interaction of a
molecule and the surrounding solvent [240, 241]. We calculate it by taking a small
part of the charge distribution from infinite distance (@ (r — oo0) = 0) into the
cavity. The charge distribution thereby changes from Ap(r) to (A + d\)p(r) with
0 < X < 1. The corresponding energy change is

dE = /d)\ - p(r) @,\(r)dV

u(MNA, Ap(r') ,
= . E . 18.101
/d)\ pr) ( - dmeg|r — 1yl +/47r50|r—r’|dv)dv (18.101)

Multiplication of the equations (18.93) by a factor of A shows that the surface
charges Ao, are the solution corresponding to the charge density Ap(r). It follows
that o,,(\) = Ao, and hence

0,A, p(r") ,
dE = \d\ + av’). 18.102
/p(r) (; dreglr — ry|  dmeglr — 1| ) ( )

The second summand is the self energy of the charge distribution which does not
depend on the medium. The first summand vanishes without a polarizable medium
and gives the interaction energy. Hence we have the final expression

Eint _/dE / AdA/p(r)Z47T€0|r_r | av
- Z / Py, (18.103)
8meg|r — ryl

For the special case of a spherical cavity with radius @ an analytical solution by a
multipole expansion is available [242]

I+ —1)
Ej = MM 18.104
! 87r50 Z Z e+ D] e L ( )
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with the multipole moments

M’"—/ .0, ),/ AT ymg. pyav
1 — p\r,v, e 21+1rl » P .

The first two terms of this series are:

1 —1 1 1 2
E;,g)z——gl MgMg:—— 1—— Q—
871'60 g1a 871'60 &1 a
1 21— 1 1,
(1) 1 1 0740 Iyl
= (MM MM MM
int 87r50(1+251)a3( 1 | FMMy A+ M M)
1 2(e; — 1) 2

2_871'80 142¢ a3

18.5.1 Example: Point Charge in a Spherical Cavity

18 Electrostatics

(18.105)

(18.106)

(18.107)

Consider a point charge Q in the center of a spherical cavity of radius R (Fig. 18.17).

The dielectric constant is given by

€0 r<R
€10 r>R "~

Electric field and potential are inside the cavity

=2 o Q+Q(l—1)

T dqegr? 4regr  4megR \ g1

and outside

E = Q D = Q

=— = r>R
dmeeor drmeegr

(18.108)

(18.109)

(18.110)

Fig. 18.17 Surface charges

)
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Fig. 18.18 (Solvation 0
energy with the boundary
element method) A spherical
cavity is simulated with
radius a = 1A which
contains a point charge in its
center. The solvation energy
is calculated with 25 x 25
(circles) and 50 x 50
(squares) surface elements of
equal size. The exact
expression (18.106) is shown
by the solid curve

solvation energy (eV)

1 10 100

which in terms of the surface charge density o is

0+ ArR?c

E
4egr?

>R (18.111)

with the total surface charge

1
47R*0 = Q (— — 1) ) (18.112)
€1
The solvation energy (18.103) is given by
2 1
Ey = Q (— — 1) (18.113)
87T€() €1

which is the first term (18.106) of the multipole expansion. Figure 18.18 shows
numerical results.

Problems

Problem 18.1 Linearized Poisson—-Boltzmann Equation

This computer experiment simulates a homogeneously charged sphere in a dielec-
tric medium (Fig. 18.19). The electrostatic potential is calculated from the linearized
Poisson Boltzmann equation (18.65) on a cubic grid of up to 100° points. The poten-
tial @ (x) is shown along a line through the center together with a log-log plot of the
maximum change per iteration
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Fig. 18.19 Charged sphere
in a dielectric medium

g,k

Fig. 18.20 Point charge Az
inside a spherical cavity

|@" D (r) — @™ (r)) (18.114)
as a measure of convergence.
Explore the dependence of convergence on

e the initial values which can be chosen either @ (r) = 0 or from the analytical
solution

8meepa  1+ka
Qe Hr—a
4drepe(ka+1)r

(18.115)

Q Zheltra) 0 .2 forp < g
d(r) = 8mepa’
(r) forr > a.

e the relaxation parameter w for different combinations of € and «
e the resolution of the grid

Problem 18.2 Boundary Element Method

In this computer experiment the solvation energy of a point charge within a spherical
cavity (Fig. 18.20) is calculated with the boundary element method (18.93).
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The calculated solvation energy is compared to the analytical value from (18.104)

Q® < (e —e)n+1)
8megR “— R ne; + (n+ Dey

Esor = (18.116)

where R is the cavity radius and s is the distance of the charge from the center of the
cavity.
Explore the dependence of accuracy and convergence on

e the damping parameter w

e the number of surface elements (6 x 6 - - - 42 x 42) which can be chosen either as
d¢dl or dod cos 0 (equal areas)

e the position of the charge



Chapter 19
Advection

Transport processes are very important in physics and engineering sciences. Trans-
port of a conserved quantity like energy or concentration of a certain substance
(e.g. salt) in a moving fluid is due to the effects of diffusion (Chap.21) and advection
(which denotes transport by the bulk motion). The combination of these two transport
mechanisms is usually called convection.

In this chapter we investigate the advection equation in one spatial dimension

0 0
o) o) =—ean fx ). (19.1)

Numerical solutions are obtained with simple and more elaborate methods using
finite differences, finite volumes and finite elements. Accuracy and stability of different
methods are compared. The linear advection equation is an ideal test case but the
methods are also useful for general nonlinear advection equations including the
famous system of Navier—Stokes equations.

19.1 The Advection Equation

Consider a fluid moving with velocity u(r) and let f(r, ) denote the concentration
of the substance. Its time dependence obeys the conservation law

0
Ef = div (Dgrad f —uf) + S, 1) = — div (Jairr + Jagw) + S(r, 1)

(19.2)
or in integral form
0
— [ dV f(x, 1)+ Jr,t)dA = [ dV S(r,1). (19.3)
ot Jy v v
Without diffusion and sources or sinks, the flux of the substance is given by
© Springer International Publishing AG 2017 427
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Fig. 19.1 Advection in an
incompressible fluid

UAt

J@r, 1) =u(r, 1) f(r, 1) (19.4)
and the continuity equation for the substance concentration reads

0 .

—f+div(fu) =0. (19.5)

ot
Introducing the substantial derivative we obtain

0 ) 0 .
Ozaf—i—dlv(fu):Ef—i—(ugrad)f—i—fdlvu (19.6)
df .
= I + f divu. (19.7)

For the common case of an incompressible fluid divu = 0 and the advection equation
simplifies to

v _2 (r, 1) (r, 1) grad) f(r,) =0 (19.8)
dt_atfr’ + (u(r, t) grad) f(r,t) = .

which has a very simple interpretation. Consider a small element of the fluid
(Fig. 19.1), which during a time interval A moves from the positionr tor + Ar =
r + uAz. The amount of substance does not change and we find

f(r,t):f(r+uAt,t+At)=f(r,t)+%—{At+uAtgradf+~-~ (19.9)

which in the limit of small At becomes (19.8).

19.2 Advection in One Dimension

Ou,y

In one dimension divu = P

equation

=0 implies constant velocity u, = c¢. The differential

of(x, 1) Of (x, 1)
ot e ox

0 (19.10)
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can be solved exactly with d> Alembert’s method. After substitution
X' =x—ct t'=t (19.11)
fO, )= f&' +ct' 1) =o', 1)

o 9 9 _ o 0 o)
ox ox ot _or ‘ox :

it becomes
0 0 0 0
0= (ﬁ_caﬂg)(p: —o (19.13)

hence ¢ does not depend on time and the solution has the
flx, 1) = ¢(x) = ¢(x —ct) (19.14)
where the constant envelope is determined by the initial values

o) = f(x, 1 =0). (19.15)

After spatial Fourier transformation
1 [o.¢]

fk,t) = =/ e f(x, )dx (19.16)

the advection equation becomes an ordinary differential equation

df, k)
dt

= %/w e ick f(x, t)dx = ick f(t,k) (19.17)
T J—00

quite similar to the example of a simple rotation (p. 13). Therefore we have to expect
similar problems with the simple Euler integration methods (p. 293).

For a Fourier component of f in space and time (i.e. a plane wave moving in
x-direction)

G = e'@ko (19.18)

we find a linear dispersion relation, i.e. all Fourier components move with the same
velocity

w = ck. (19.19)
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19.2.1 Spatial Discretization with Finite Differences

The simplest discretization (p. 259) is obtained by introducing a regular grid

Xp=mAx m=1,2...M (19.20)

(@) = f(xm, 1) (19.21)

and approximating the gradient by a finite difference quotient.

In the following we use periodic boundary conditions by setting fo = fur, fu+1 =
/1 which are simplest to discuss and allow us to simulate longer times on a finite
domain.

19.2.1.1 First Order Forward and Backward Differences (Upwind
Scheme)

First we use a first order backward difference in space

df;n(t) — Cﬁn(t) - f;n—l(t)

19.22
dt Ax ( )

From a Taylor series expansion

A 2 92
f(x—Ax)=f(x)—g—£Ax+( O f

0
=epr—Axa—x] f(x)

2 ox?
(19.23)
we see that the leading error of the finite difference approximation
o) —fx—A 9 ) Ax &?
of JW-ja=-aAn _0of OF, AxOF (19.24)

or Ax o Sox T2 ox2

looks like a diffusion term for positive velocity ¢ and is therefore called “numeri-
cal diffusion”. Negative velocities, instead lead to an unphysical sharpening of the
function f.

For ¢ < 0 we have to reverse the space direction and use a forward difference

dfm(t) — cferl(l) - fm(t)

19.25
dr Ax ( )

for which the sign of the second derivative changes
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o1 Ax = ‘ox ‘2o T

_ 2
of _ fatan-fw) _of  Oof  Axdf (19.26)

Using the backward difference we obtain a system of ordinary differential

equations
1 —1 fi
(A0

- _ ¢ A .
! = N B (19.27)
S N U A
Sfm -1 1 fm
or shorter
Y (19.28)
dr Ax

with the formal solution

£(1) =exp{—iMr}f(t —0). (19.29)
Ax

The eigenpairs of M are easily found (see p. 221). Inserting the Ansatz

e—ikAx

(19.30)

=
Il

e—MlkAx

corresponding to a Fourier component (19.18) into the eigenvalue equation we obtain

e—ikAx _ e—MikAx
( e—2ikAx _ e—likAx \
Mty =1 : l. (19.31)
ke—(M—Al)ikAx _ e—(M—AZ)ikAx}
e—MlkAx _ e—(M—l)lkAx
Solutions are found for values of k£ given by

, 2 2
e Mikay — k=0 1 (M —1)—L
M Ax M Ax

(19.32)

or, reducing k-values to the first Brillouin zone (p. 132)

M even (19.33)

i (M 1) 2w 2T 2T M 2r

— — — ,0, e —
2 M Ax M Ax M Ax 2 MAx
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M 2 2 2 M 2
h=—o T 0, 2T Modd (19.34)
2 MAx MAx M Ax 2 MAx
for which
Mt = Mfp = (1 — %4 £y (19.35)
The eigenvalues of ———M are complex valued
or = ——(1 —e*4%) = < (coskAx — 1) +i—— sinkAx (19.36)
T Ax  Ax Ax '
and so is the dispersion
. c . . C
wp = —loy = — sinkAx —i—(coskAx — 1). (19.37)
Ax Ax

If we take instead the forward difference we find similarly

C . C . C .
or = —E(e_‘mx -1 = —E(coskAx -1 —HE sinkAx (19.38)
. c . . C
wp = —iN\y = — sinkAx +i—(coskAx — 1). (19.39)
Ax Ax

19.2.1.2 Second Order Symmetric Difference

A symmetric difference quotient has higher error order and no diffusion term

fa+Ax) = f(x—Ax) sinh(AxZ)  9f (A0S

2Ax Ax f Ox 6 ox3
(19.40)
It provides the system of ordinary differential equations.
h 0 12 =12 h
g =120 12 H
d : ¢ :
O : = : . (19.41)
Sm-1 =20 1) Sm-1
fu /2 =12 0 fu

The eigenpairs of M are easily found (see p. 221) from
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1 — T 7 7 T T T T T — 2
l’ ’./'
0.8 / B 19
g I :ll | r'/ g
> ~ y — i e T o]
5 06 <
g I 1 0 g
T 04 E | NN | =
& I ] E
02 4 L 1!
0 L | | ‘\T\‘

P R B B . P - )
0 02 04 06 038 1 0 02 04 06 08 1

k Ax/nt k Ax/nt
Fig. 19.2 (Dispersion of finite difference quotients) The dispersion of first order (19.37, 19.39)
and second order (19.45) difference quotients is shown. Left the real part of wy (full curve) which
is the same in all three cases is compared to the linear dispersion of the exact solution (broken line).

Right imaginary part of wy (dashed curve = forward difference, dash-dotted curve = backward
difference, full line = second order symmetric difference)

e72ikAx _ efMikAx
X 673ikAx _ efikAx
M = =1 : I (19.42)

efMikAx _ ef(Mfz)ikAx
efikAx _ ef(Mfl)ikAx

1 . .
= E(e—l’m —efANf — —isinkAx £y (19.43)

hence the eigenvalues of —— =M are purely imaginary and there is no damping
(Fig.19.2)

or = i—— sinkAx (19.44)
Ax
. c .
wy = —loy = — sinkAx. (19.45)
Ax

19.2.2 Explicit Methods

Time integration with an explicit forward Euler step proceeds according to (p. 293)

af af

f(t + Ar) =£(t) + n At =1(t) — CEC At (19.46)
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and can be formulated in matrix notation as
f(t + Ar) = Af(t) = (1 — aM)HE (1) (19.47)

where the matrix M depends on the discretization method.

19.2.2.1 Forward in Time, Backward in Space

Combination with the backward difference quotient gives the FTBS (forward in time
backward in space) method

St + A = f(x,0) —a(f(x, 1) — f(x — Ax, 1)) (19.48)
with the so called Courant number [243]!

At
a=c—. (19.49)
Ax

The eigenvalues of 1 — aM are

o =1 — a(l —e*4%)

=1—a(l —coskAx) + iasinkAx (19.50)
with absolute square (Fig. 19.3)

lok)?> = 14+ 2(a® — a)(1 — cos kAx). (19.51)

Stability requires that |0y | < 1, i.e.

2(042 —a)(1 —coskAx) <0 (19.52)

and, since (1 — coskAx) >0

(@ —Da <0 (19.53)
with the solution?

0<acx<l (19.54)

! Also known as CFL (after the names of Courant, Friedrichs, Lewy).
2The so called Courant— Friedrichs— Lewy condition (or CFL condition).
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Fig. 19.3 (Stability of the
FTBS method) Top the
magnitude of the eigenvalue
|ox| is shown as a function of
k for positive values of the
Courant number (from
Bottom to Top) o =
0.5,0.6,0.7,0.8,0.9, 1.0,
1.1. The method is stable for
o < 1 (full curves) and
unstable for a > 1 (dashed
curves). Bottom the
magnitude of the eigenvalue
|ok| is shown as a function of
k for negative values of the
Courant number (from
Bottom to Top) o =

-0.1, -0.3, -0.5, —0.7,
—0.9. The method is
unstable for all @ < 0

Fig. 19.4 (Performance of
the FTBS method) An
initially rectangular pulse
(dashed curve) is propagated
with the FTBS method

(Ax =0.01, Ar =

0.005, @ = 0.5). Due to
numerical diffusion the
shape is rapidly smoothened.
Results are shown after 1,10
and 100 round trips (2000
time steps each)

lo(k)l

lo(k)l

£ (%)

435
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0 L i
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The FTBS method works, but shows strong damping due to numerical diffusion

(Fig. 19.4). Its dispersion relation is

wi At = —iln(oy) = —iln ([1 — a(l — coskAx) +iasinkAx]) . (19.55)

19.2.2.2 Forward in Time, Forward in Space

For a forward difference we obtain similarly

S, t+ A1) = f(x,t) —a(f(x + Ax, 1) — f(x,1)) (19.56)
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or=1—aEe* 4 1) (19.57)

loel> = 14 2(a® + a)(1 — coskAx) (19.58)

which is the same result as for the backward difference with « replaced by—a.

19.2.2.3 Forward in Time, Centered in Space

For a symmetric difference quotient, the eigenvalues of M are purely imaginary, all
eigenvalues of (1 + aM)

or =1 +iasinkAx (19.59)

low|> = 1 4+ a?sin> kAx (19.60)

have absolute values |o;| > 1 and this method (FTCS, forward in time centered in
space) is unstable (Fig. 19.5).

19.2.2.4 Lax-Friedrichs-Scheme

Stability can be achieved by a modification which is known as Lax-Friedrichs-
scheme. The value of f(x, t) is averaged over neighboring grid points

i+ Ar) = f(x+Ax);f(x_Ax)—%(f(x—i—Ax)—f(x—Ax))

-« 0 I+« 0
_|: 3 exp(Axa)+ > exp(—Axa)}f(x,t)

of  (Ax)*0*f
e SR (19.61)

=1—

Fig. 19.5 (Instability of the
FTCS method) An initially
Gaussian pulse (dashed
curve) is propagated with the
FTCS method (Ax =

0.01, Ar = 0.005, « = 0.5).
Numerical instabilities
already show up after 310
time steps and blow up
rapidly afterwards

f(x)

400 600 800
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The error order is O(Ax?) as for the FTCS method but the leading error has now
diffusive character. We obtain the system of equations

1l -« 1+«
1+« l—«o

f(t+At):%I 1£(r). (19.62)

1+« 1 -«
1l —«o 14+«

The eigenvalues follow from

(1 — )e I+HDKAY (] 4 )e=iln=DkAx _ o—inkAx [(] — e VA (4 a)eikAx]

(19.63)
and are given by
1 . .
0% = [(1 — a)e ™ + (1 + )]
= coskAx + iasinkAx. (19.64)

The absolute square is

|O_k|2 — Z [(1 _ a)e—l)kAX + (1 + a)elkAx] [(l _ a)el)kAX + (l + a)e—lkAx]
1 . )
— Z [(] _ a)2 + (1 +Oé)2 + (1 _ aZ)(e—ZlkAx +e21kAX)]

1
=5 [1+a”+ (1 —a?) cos2kAx]

=1—(1 - o) (sinkAx)? (19.65)
and the method is stable for

(1 —a?)(sinkAx)> >0 (19.66)
which is the case if the Courant condition holds

la| < 1. (19.67)
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19.2.2.5 Lax-Wendroff Method

The Lax-Friedrichs method can be further improved to reduce numerical diffusion
and obtain a method which is higher order in time. It is often used for hyperbolic
partial differential equations. From the time derivative of the advection equation

O (01 _ _ 0 (912201
E(E)_ Cax(at)_c ox? (19:68)

we obtain the Taylor expansion

2 2
f(t+At)=f(t)—Atca—f+& 20/

ZS . 19.
Ox 2 Cax2+ (19.69)

which we discretize to obtain the Lax-Wendroff scheme

Faot+ AN = fxn) — arelEHAND — fle = Av D)
2Ax

(A1)? 2 fOe+Ax, )+ f(x — Ax, 1) = 2f(x,1)
2 ¢ (Ax)? '

_|_

(19.70)

This algorithm can also be formulated as a predictor-corrector method. First we
calculate intermediate values at t + Az/2, x £ Ax /2 with the Lax method

Ax At _f(x+Ax,t)+f(x,t)_ fx+ Ax, 1) — f(x,1)
f(x+ T,l"r‘ 7) = 5 cAt > Ax

f(x—ﬂ,t—l—ﬁ): fx, )+ f(x — Ax, 1) _CAtf(x,t)—f(x—Ax,t)

2 2 2 2Ax
(19.71)
which are then combined in a corrector step
x+ A+ 4y — fx— 4+ 4
f(xst+At)=f(x,t)—cAtf( 2 2) f( > 2).
Ax
(19.72)

Insertion of the predictor step (19.71) shows the equivalence with (19.70).

Fln — c_At |:f(x+Ax,t)+f(x,t) _CAtf(x+Ax,t)—f(x,t)
’ Ax 2 2Ax
_f(x,t)+f(x—Ax,t) +CAtf(x,t)—f(x—Ax,t)i|
2 2Ax
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. At | f(x+ Ax,t) — f(x — Ax, 1)
_f(x’t)_CZAxl: 2 }

c2(A1)?

* 2axy

In matrix notation the Lax-Wendroff method reads

f(1+An =1 o002 oze b(p)
1 |
with eigenvalues

2 2
a4+ o o — :
. 1 2 elkAx e—lkAX

=1—a®+ a?coskAx +iasinkAx
and

lox|? = (1 4+ a®(cos(kAx) — 1))* + o’ sin® k Ax

=1-0a*(1 —a®( — coskAx)?
which is < 1 for
a?(1 —a?)(1 — coskAx)* = 0

which reduces to the CFL condition
lal < 1.

19.2.2.6 Leapfrog Method

The Leapfrog method uses symmetric differences for both derivatives

S, 0+ A1) — flx,t — A1) _Cf(x+Ax,t)—f(x—Ax,t)

[f(x+ Ax,t) —2f(x,t) + f(x — Ax,1)].

2At 2Ax
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(19.73)

(19.74)

(19.75)

(19.76)

19.77)

(19.78)

(19.79)
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Fig. 19.6 Leapfrog method ty o ° [ ° L]
for advection / >< \
n+1 ° ® o [ ] ]
n /°><'§§.><o
n—1 ° ° ° ° °
> X

m-2 m-1 m m+1 5+2

to obtain a second order two step method
fx,t+ At) = f(x,t — At) —a[f(x + Ax,t) — f(x — Ax, 1)] (19.80)

on a grid which is equally spaced in space and time.

The calculated data form two independent subgrids (Fig. 19.6). For long integra-
tion times this can lead to problems if the results on the subgrids become different
due to numerical errors. Introduction of a diffusive coupling term can help to avoid
such difficulties.

To analyze stability, we write the two step method as a one step method, treating
the values at even and odd time steps as independent variables

gm = f(mAx,2nAt) h), = f(mAx, (2n+ 1)At) (19.81)

for which the Leapfrog scheme becomes

Rl = hit—adgh i — ghoy) (19.82)
gt =gl — (bl — R ). (19.83)

Combining this two equations we obtain the one step iteration

2 2n+1
G =Lu" B =1

(1 L—aM\ (1" _( 1 —aM \ (0"
gt ) T \—aM 1 1 " )] T \—aM 1+ o>M? g )
(19.84)

The eigenvalues of the matrix M are A, = —2isin k Ax, hence the eigenvalues of
the Leapfrog scheme
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Fig. 19.7 (Dispersion of first order explicit methods) Real (Left) and imaginary (Right) part of
wy are shown for the first order explicit FTBS (Top), FTCS (Middle) and Lax-Friedrich (Bottom)
methods for values of a = 0.3, 0.5, 0.75, 0.9

or =1+

a2 )\? a* )\
4+ 2)\2
y VANt

=1-2a’sin’kAx + 2\/042 sin® k Ax(a? sin> kAx — 1).

(19.85)

For || < 1 the squareroot is purely imaginary and
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Fig. 19.8 (Dispersion of second order explicit methods) Real (Left) and imaginary (Right) part of
wy are shown for the second order explicit Lax-Wendroff (Top) and leapfrog (Bottom) methods for
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2
lox|" =1

i.e. the method is unconditionally stable and diffusionless. The dispersion

2V a?sin? kAx — afsin* kA
2wAt = —ilno, = arctan | + Va i al (19.86)
1 —2a2sin” kAx

has two branches. Expanding for small kAx we find
WA Fck+ - (19.87)

Only the plus sign corresponds to a physical mode. The negative sign corresponds
to the so called computational mode which can lead to artificial rapid oscillations.
These can be removed by special filter algorithms [244, 245].

Figures. 19.7, 19.8 and 19.9 show a comparison of different explicit methods.
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Fig. 19.9 (Comparison of
explicit methods) The results
from the FTBS,
Lax-Friedrichs(L, green),
Lax-Wendroff (LW, black)
and leapfrog (LF, red)
methods after 10 roundtrips
are shown. Initial values
(black dashed curves) are
Gaussian (7op), triangular
(Middle) and rectangular 0 s s s - =00
(Bottom). Ax = 0.01, x/AX
At =0.005,=0.5

f(x,t)

f(x,t)

f(x,t)
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1 1 1
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X/Ax

19.2.3 Implicit Methods

Time integration by implicit methods improves the stability but can be time con-
suming since inversion of a matrix is involved. A simple Euler backward step (13.4)
takes the derivative at r + At

f(t + A1) =£(@) — aMf(t + At) (19.88)

which can be formally written as

f(t + A1) = (1 + aM)"'£(@). (19.89)
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The Crank—Nicolson method (13.5) takes the average of implicit and explicit Euler
step

£t + A1) = £(1) — %M [£(t + Af) + £(1)] (19.90)

f(1 + Ar) = (1 + %M)_l (1 — %M) £(1). (19.91)

Both methods require to solve a linear system of equations.

19.2.3.1 First Order Implicit Method

Combining the back steps in time and space we obtain the BTBS (backward in time,
backward in space) method

-1

fGt+A) =14+« f(r). (19.92)

-1 1
-1 1

The tridiagonal structure of the matrix 1 4+ oM simplifies the solution of the
system. The eigenvalues of (1 + aM)~! are

1

_ 4 19.93
1 + a(l — eikax) ( )

Ok

1
low|> = (19.94)

= <1
14+ a)?+a?—2a(l +a)cos(kAx) —

and the method is unconditionally stable.

19.2.3.2 Second Order Crank-Nicolson Method

The Crank—Nicolson method with the symmetric difference quotient gives a second
order method

(1 n %M) f(r + Ar) = (1 — %M) £1). (19.95)
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The eigenvalues of (1 + %M)‘l(l — 5 M) are
1+ SisinkAx
o= —a———— (19.96)
I — Fisin kAx
1— %2 sin? kAx + i sin kAx
= S (19.97)
1 + % sin”kAx
with
low]? =1 (19.98)

There is no damping but strong dispersion at larger values of «, slowing down
partial waves with higher k—values (Fig. 19.11)

This method is unconditionally stable (Fig. 19.10). It may, however, show oscilla-
tions if the time step is chosen too large (Fig. 19.11). It can be turned into an explicit
method by an iterative approach (iterated Crank—Nicolson method, see p. 475), which
avoids solution of a linear system but is only stable for o < 1.

19.2.4 Finite Volume Methods

Finite volume methods [246] are very popular for equations in the form of a
conservation law

of(x,1)

T —divJ(f(x,1)). (19.99)

J - —Hos

K
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Im(w /o)
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-1

Fig. 19.10 (Dispersion of the Crank—Nicolson method) Real (Left) and imaginary part (Right)
part of wy are shown for o = 0.1, 9, 5, 10. This implicit method is stable for o > 1 but dispersion
becomes noticeable at higher values
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Fig. 19.11 (Performance of
the Crank—Nicolson method)
Results of the implicit
Crank—Nicolson method
after 10 roundtrips are
shown. Initial values (black
dashed curves) are Gaussian
(Top), triangular (Middle)
and rectangular (Bottom).
Ax =0.01, Ar = 0.01

(o = 1, red dash-dotted
curve) At = 0.1(a = 10,
blue full curve)

At = 0.2(a = 20, green
dotted curve, only shown for
Gaussian initial values)
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In one dimension the control volumes are intervals, in the simplest case centered at

equidistant grid points x,,

Ax

V=[x — —,x, +

2

Ax

=

2

(19.100)

Integration over one interval gives an equation for the cell average

o Ax ot

of, () 1.0 /XnMX/Z 1

n—Ax/2

Xp+Ax/2

flx, ) =—— .

Ax Xp—Ax/2 Ox

J(x, 1)
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J n—1/2(t) J n+1/2(t)

e —

Fig. 19.12 (Finite volume
method) The change of the
cell average f, is balanced
by the fluxes through the cell

?(t) ' fn+1(t) '
= n AR, :
interfaces J 41/ fo (1) 1 1

1 Ax
= —— J(xn+_

0 — T — 2% (19.101)
Ax 2 R '

Formally this can be integrated

_ o 1 t+ At A t+ At A
f,,(l+At)ff(t)=f—|:/ J(x,,+—x,t/)dt7/ J(x,,f—x,t')dt]
Ax |, 2 ' 2

(19.102)

and with the temporally averaged fluxes through the control volume boundaries

_ 1 t+At Ax ,
Jutp(t) = A J{x, = > ,t ) dt (19.103)
t

it takes the simple form (Fig. 19.12)

— — At — —
Fult +40 = 7,00 = [Tnep () = Tup0]. (19.104)

A numerically scheme for a conservation law is called conservative if it can
be written in this form with some approximation 7n:|:]/2(t) of the fluxes at the cell
interfaces. Conservative schemes are known to converge to a weak solution of the
conservation law under certain conditions (stability and consistency).

To obtain a practical scheme, we have to approximate the fluxes in terms of the cell
averages. Godunov’s famous method [247] uses a piecewise constant approximation

of f(x,1)
Fe, )~ f,(t) for x,_1, <X < Xpiip. (19.105)
To construct the fluxes, we have to solve the Riemann problem3

of oJ
—_— = —— 19.106
ot Ox ( )

3 A conservation law with discontinuous initial values.
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with discontinuous initial values

_Tn(t) ifx < Xn+1/2
fn+1 (t) if x > er—‘/z

f(x,t):[

in the time interval

t <t <t+ At.

19  Advection

(19.107)

(19.108)

For the linear advection equation with J(x, ) = cf(x, t) the solution is eas-
ily found as the discontinuity just moves with constant velocity. For cAr < Ax,

d’Alembert’s method gives

A _
£+ 7)‘ 1) =Fo0)

and the averaged flux is

_ c t+At Ax o
jHI/Z(t):A_t/ f(x,,—}—T,t/)dt:cfn(t).
t

Finally we end up with the FTBS upwind scheme (Sect. 19.2.2)

_ — A _
fn(t + At) = fn(t) - CA_xt [?n(t) - fn—l(t)] .

(19.109)

(19.110)

(19.111)

For general conservation laws, approximate methods have to be used to solve the

Riemann problem (so called Riemann solvers [248]).

Higher order methods can be obtained by using higher order piecewise interpo-

lation functions. If we interpolate linearly
)= f,(0) + (x = x,)0,(1) for x, 1, < X < Xuqp
the solution to the Riemann problem is

Ax

Ax Ax , — ’
f(xn+7,t)=f(xn+7—c(t—t),t):fn(l)+|:7—c(t —t)]Un(t)

fn+1 - fn—l

=7 @ Ax t—t
_fn()+|:7_c( _)] 2 Ax
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The time averaged fluxes are

_ — Ax A
Jnpip=cf,(t)+c |:— — c—:| o, (1)

and we end up with

_ — cAt [ — — Ax At
fat + A1) = f,(0) — Ax [f,l(t) = fuot () + (7 - 67> (on — Un_l)] .

(19.112)
If we take the slopes from the forward differences
Op = f”*‘A I (19.113)
X
we end up with
7 T CA’ T ] A A oapy St =2t
Flt+ A0 = £, [Fa®) = Fuc1 @] = 57— (Ax —cAn o
_ A - ?}1+1 - 27;1 +7n71 (CAt)2 7n+1 - 2?;1 +7n71
= fa®) {f,,(t) S @)+ 2 T oA e
A 711 — 7!1— A 2 7n — 2711 + 7}1—
_f ()_”|:f +12f 1 +(2Azx) f—H Afx f 1 (19114)

i.e. we end up with the Lax-Wendroff scheme. Different approximations for the slopes
are possible (backward difference, symmetric differences) leading to the schemes of
Fromm and Beam-Warming.

19.2.5 Taylor-Galerkin Methods

The error order of finite difference methods can be improved by using a finite element
discretization [249, 250]. We start from the Taylor series expansion in the time step

B Of (A2 PF (AP OPf
Fa+AD=fO+8 o+ o+ = s

(19.115)

which is also the basis of the Lax-Wendroff method (19.70) and make use of the
advection equation to substitute time derivatives by spatial derivatives
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of (At)z zazf (At)3 2 63f
f(t+At)_—f(t)—Atc—x+ > c 2zt e C—t x2—|—~--
(19.116)

where we use a mixed expression for the third derivative to allow the usage of linear
finite elements. We approximate the third derivative as

Ff _ P St A= [
Otox?  Ox2 At

(19.117)

and obtain an implicit expression which is a third order accurate extension of the
Lax-Wendroff scheme

(A1, & ~ af (A2 L0f
[1 — TC @] (f(x, t+ At) — f(x, 1) = —At Ca—x + TC W
(19.118)

Application of piecewise linear elements on a regular grid (p. 282) produces the
following Lax-Wendroff Taylor-Galerkin scheme

2
[1 + é (1-a?) Dg] (F(t + A1) — £(t)) = [—a M, + %M2i| £(r).  (19.119)

The Taylor-Galerkin method can be also combined with other schemes like
leapfrog or Crank—Nicolson [250]. It can be generalized to advection-diffusion prob-
lems and it can be turned into an explicit scheme [251] by series expansion of the
inverse in

-1 >
£t + A = £() + [1 + é (1-a?) M{| [—a My + %Mz] £(r). (19.120)

The eigenvalues are

aisinkAx — 2a? sin

2 102 kA
l—g(l—az)sm TX

2 kAx
2

(19.121)

O =

The method is stable for || < 1. Due to its higher error order it shows less
dispersion and damping than the Lax-Wendroff method (Fig.19.13) and provides
superior results (Fig. 19.14).
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Fig. 19.13 (Dispersion of the Taylor-Galerkin Lax-Wendroff method) Real (Left) and imaginary
part (Right) part of wy are shown for o = 0.3, 0.5, 0.75, 0.9

Fig. 19.14 (Performance of
the Taylor-Galerkin
Lax-Wendroff method)
Results of the Lax-Wendroff
(dashed curves) and
Taylor-Galerkin
Lax-Wendroff (full curves)
methods are compared after
25 roundtrips (2000 steps
each). Ax = 0.01,

At =0.005, ¢ =0.5
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19.3 Advection in More Dimensions
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While in one dimension for an incompressible fluid ¢ = const, this is not necessarily
the case in more dimensions.
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19.3.1 Lax—Wendroff Type Methods

In more dimensions we substitute

of
o= —uVf (19.122)
AN CAY ory

in the series expansion

f(t+At)—f(t)=Az—t+——+~- (19.124)

to obtain a generalization of the Taylor expansion (19.69)

(Ar)?

f+ A1) — f(t) = —AtuVf + >

@V)Y@V)f +--- (19.125)

which then has to be discretized in space by the usual methods of finite differences
or finite elements [250]. Other one-dimensional schemes like leapfrog also can be
generalized to more dimensions.

19.3.2 Finite Volume Methods

In multidimensions we introduce a, not necessarily regular, mesh of control vol-
umes V;. The surface of V; is divided into interfaces A; , to the neighboring cells.
Application of the integral form of the continuity equation (19.3) gives

9 av e, t):—?{ J(r, 1)dA (19.126)
ot 7 AV,

and after time integration

fit 4+ At — f(t) = —At 275»0(’) (19.127)

with the cell averages
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Fig. 19.15 Averaged fluxes
in 2 dimensions .
i1
A
_ \
J|’4 - fT —+I2
\
v
Ji,S
f.(0) = 19 / dv f(r, 1) (19.128)
STy ’ '
and the flux averages
_ 1 1 t+At
Jiot) = —— dt’ ,)dA. 19.129
(0 AtV,-;/, [ARCT (19.129)

For a regular mesh with cubic control volumes the sum is over all cell faces

Fint+ Aty = fi@) — At [Jigpjc @) + Tijpic®) + Tijagryn, (0
—Jicp k@) = =T jopi () = Tijaerp (D] (19.130)

The function values have to be reconstructed from the cell averages, e.g. piecewise
constant

f@,t)=f;t) forreV; (19.131)
and the fluxes through the cell surface approximated in a suitable way, e.g. constant
over a surface element (Fig. 19.15)

Jr,t) =Jio@) forre A;,. (19.132)

Then the Riemann problem has to be solved approximately to obtain the fluxes for

times ¢ ...t + At. This method is also known as reconstruct evolve average (REA)
method. An overview of average flux methods is presented in [252].
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19.3.3 Dimensional Splitting

Splitting methods are very useful to divide a complicated problem into simpler
steps. The time evolution of the advection equation can be written as a sum of three
contributions®

9 _ g —_ - - 19.1
o1 vauf) dx By oz (19.133)

or, for an incompressible fluid

of of _ of _ of

i —ugrad f = —uxa—x - uya —u, % (19.134)
which has the form

af

E:Af:(Ax—l—Ay—i—Az)f. (19.135)
The time evolution can be approximated by

f(t 4+ Ar) = 2 f (1) A e Mg A (1) (19.136)

i.e. by a sequence of one-dimensional time evolutions. Accuracy can be improved
by applying a symmetrical Strang-splitting

f(t + At) ~ eAt/ZAXeAt/ZA}.eAZA;eAl/ZAyeAI/ZA)f(t). (19137)

Problems

Problem 19.1 Advection in one Dimension

In this computer experiment we simulate 1-dimensional advection with periodic
boundary conditions. Different initial values (rectangular, triangular or Gaussian
pulses of different widths) and methods (Forward in Time Backward in Space,
Lax-Friedrichs, leapfrog, Lax-Wendroff, implicit Crank—Nicolson, Taylor-Galerkin
Lax-Wendroff) can be compared. See also Figs. 19.4, 19.11, 19.14 and 19.9.

4This is also the case if a diffusion term D ( ax{ +2 By L+ C:%) is included.



Chapter 20
Waves

Waves are oscillations that move in space and time and are able to transport energy
from one point to another. Quantum mechanical wavefunctions are discussed in
Chap. 23. In this chapter we simulate classical waves which are, for instance, impor-
tant in acoustics and electrodynamics. We use the method of finite differences to
discretize the wave equation in one spatial dimension

2

82
53 (6x) = czﬁf(t, X). (20.1)

Numerical solutions are obtained by an eigenvector expansion using trigonomet-
ric functions or by time integration. Accuracy and stability of different methods are
compared. The wave function is second order in time and can be integrated directly
with a two step method. Alternatively, it can be converted into a first order system
of equations of double dimension. Here, the velocity appears explicitly and veloc-
ity dependent damping can be taken into account. Finally, the second order wave
equation can be replaced by two coupled first order equations for two variables (like
velocity and density in case of acoustic waves), which can be solved by quite general
methods. We compare the leapfrog, Lax—Wendroff and Crank—Nicolson methods.
Only the Crank—Nicolson method is stable for Courant numbers o« > 1. It is an
implicit method and can be solved iteratively. In a series of computer experiments
we simulate waves on a string. We study reflection at an open or fixed boundary and
at the interface between two different media. We compare dispersion and damping
for different methods.

20.1 Classical Waves

In classical physics there are two main types of waves:

Electromagnetic waves do not require a medium. They are oscillations of the elec-
tromagnetic field and propagate also in vacuum. As an example consider a plane wave
which propagates in x-direction and is linearly polarized (Fig.20.1). The electric and
magnetic field have the form

© Springer International Publishing AG 2017 455
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Fig. 20.1 Electromagnetic y
wave

E

fH W TM i 7/ e
YA et

z
0 0
E=(E@n| B= 0 . (20.2)
0 B,(x,1)

Maxwell’s equations read in the absence of charges and currents

divE =divB =0 tE OB tB OF (20.3)
ivE=divB=0, rotE=——, rotB= —. .
v v ot Hoso 5,

The fields (20.2) have zero divergence and satisfy the first two equations. Application
of the third and fourth equation gives

OE, 0B, 0B, OE,
—_— = -—= - 20.4
ox o ox M (204
which can be combined to a one-dimensional wave-equation
O*E, ,OE,
= - 20.5
o~ ¢ Tox? (202)

with velocity ¢ = (p0e0) ™.

Mechanical waves propagate through an elastic medium like air, water or an elastic
solid. The material is subject to external forces deforming it and elastic forces which
try to restore the deformation. As a result the atoms or molecules move around their
equilibrium positions. As an example consider one-dimensional acoustic waves in
an organ pipe (Fig.20.2):

A mass element
dm = odV = pAdx (20.6)

at position x experiences an external force due to the air pressure which, according to
Newton’s law changes the velocity v of the element as described by Euler’s equation’

'we consider only small deviations from the equilibrium values oo, pg, vo = 0.
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F)=p()A | D F(erdx)=—p(x+d)A A
— Il ‘A
—»E dm E—» i
J(X)=p, Av(x) ! J(x+dx)= p,Av(x+dx) V
X x+dx

Fig.20.2 (Acoustic waves in one dimension) A mass elementdm = pAdx at position x experiences
atotal force F = F(x) + F(x +dx) = —A %dx. Due to the conservation of mass the change of
the density % is given by the net flux J = J(x) — J(x +dx) = —goA%dx

X

0 ap
g,__9 20.
235,V o (20.7)

The pressure is a function of the density

"rd
P (ﬁ) (_1’) _ 2 (20.8)
Po 00 do/, 00

where n = 1 for anisothermal ideal gas andn ~ 1.4 for air under adiabatic conditions
(no heat exchange), therefore

B d
Qv = —cza—f. (20.9)

From the conservation of mass the continuity equation (12.10) follows

0 0
— 0= —0p—0. 20.10
5 Qo5 V ( )

Combining the time derivative of (20.10) and the spatial derivative of (20.9) we
obtain again the one-dimensional wave equation

2 L,

50 =550 (20.11)

The wave-equation can be factorized as

0 0 0 0 0 0 0 0
- —Il= —c=)o=l= —c— )= —)o= 20.12
(8t+cax) (81‘ Cax)g (3t Cax) (at“ax)g 0 G0
which shows that solutions of the advection equation

o 0
(E 4 05) 0=0 (20.13)
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Fig. 20.3 d’Alembert

solution to the wave equation f(x+ct) f(x—ct)

are also solutions of the wave equation, which have the form
o= f(x £ct). (20.14)
In fact a general solution of the wave equation is given according to d’ Alembert as
the sum of two waves running to the left and right side with velocity ¢ and a constant
envelope (Fig.20.3)
0= filx +ct) + folx —ct). (20.15)
A special solution of this kind is the plane wave solution
f(.x, t) — eiwtiikx

with the dispersion relation

w = ck. (20.16)

20.2 Spatial Discretization in One Dimension

We use the simplest finite difference expression for the spatial derivative (Sects. 3.4
and 12.2)

2 — JR—
9 ey = LOEFAVETOXZ A 220 4 02 017)
Ox Ax?

and a regular grid
Xp=mAx m=12...M (20.18)

fm = f(xm)- (2019)
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Xo X1 X3 XM-1 XM XM+

Xo X1 X3 XM-1 XM XM+

Fig. 20.4 (Boundary Conditions for I-dimensional waves) Additional boundary points
X0, Xpm+1 are used to realize the boundary conditions. (a) Fixed boundaries f(xg) = 0

Zfo) = 4a(f@) - 2f0)) orfems) = 025 faw) = 4 (fam-n) —
2f(xm)).(b) Periodic boundary conditionsxy = xy, %zf(xl) = ﬁ(f(xz) + fm) —
2f ) xup1 = X fOm) = b (F@m-1) + F(x1) = 2f(xya)).(¢) Open bound-
aries £ f(x)) = L0200 — 0.0 piy) = L @f) - 2f@)or £ ) =
Lo Joned) - = 02 f(xy) = Z5@Qf((xw-1) — 2/Ctw).(d) Moving bound-
aries f(x0.1) = &) L5 f(x1) = 2y (F(2) = 2F () + &) or flams1. 1) = Eua (D),
L FOom) = s (Fm—1) — 2 Gean) + En1 (0)

This turns the wave equation into the system of ordinary differential equations
(Sect. 12.2.3)

d2 2fm+1 +fm—l _me
a 20.2
dtzfm c Ax? (20.20)

where fyand f),; have to be specified by suitable boundary conditions (Fig.20.4).
In matrix notation we have

fi(@)
f(t) = : (20.21)
Ju ()




460 20 Waves

d2
@f(t) = Af(t) + S(¢) (20.22)
where for
-2 1
1 =2 1
1 -2 1 &2
fixed boundaries A = o — S(H))=0 (20.23)
STl e Ax2
1 =21
1 =2
-2 1 1
1 =21
1 -2 1 2
periodic boundaries’> A = —— S() =0 (20.24)
e Ax?
1 -2 1
1 1 =2
-2 2
1 -2 1
1 -2 1 2
open boundaries A = o — S() =0 (20.25)
Coe Ax?
1 -2 1
2 =2
-2 1 &o(1)
1 -2 1 0
121 2
moving boundaries A = . — S@) =
R Ax :
1 -2 1 0
b2 Em1 (1)
(20.26)

A combination of different boundary conditions for both sides is possible.

Equation (20.20) corresponds to a series of mass points which are connected by
harmonic springs (Fig.20.5), a model, which is used in solid state physics to describe
longitudinal acoustic waves [253].

2This corresponds to the boundary condition fy = f2, % f(x1) = 0. Alternatively we could use
fo= fi1. a%f()m/z) = 0 which replaces the 2s in the first and last row by Is.
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| | | —

(-1)A x JAX (j+1) Ax

Fig. 20.5 (Atomistic model for longitudinal waves) A set of mass points m is connected by springs
with stiffness K. The elongation of mass point number j from its equilibrium position x; = jAx
is £;. The equations of motion mé, =—K( —&j-1) — K(& — &j+1) coincide with (20.20) with

kAx

a velocity of ¢ = Ax,/ =

20.3 Solution by an Eigenvector Expansion

For fixed boundaries (20.20) reads in matrix form

d2
—f(t) = Af(t 20.27
50 = AL(®) (20.27)

with the vector of function values:
fi@®)
f(r) = : (20.28)
Ju(®)

and the matrix
-2 1
1 -2 1
I 1 -2 1 |
| |

1 -2 1
1 =2
which can be diagonalized exactly (Sect. 10.3). The two boundary points f(0) = 0
and f((M + 1)Ax) = 0 can be added without any changes. The eigenvalues are

A= ~- (20.29)

=1...M

(20.30)

c? 4c% 5 [ kAx .9
A= ZF(cos(kAx) —1)=——=sin" | — ) = (iwp)” kAx =
X

T
—
Ax? 2 (M +1)

with the frequencies
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Fig. 20.6 (Dispersion of the ‘ ‘ ‘ T
discrete wave equation) The e

dispersion of the discrete | e
wave equation approximates e
the linear dispersion of the e
continuous wave equation e

only at small values of k. At
kmax = m/Ax it saturates at
Wmax = 2¢/Ax = P
2/m) ckmax 05 e 7

max
N

W/
N\

2¢ . (kAx (2031)
wp=—sin| —|). .
YT Ax 2
This result deviates from the dispersion relation of the continuous wave equation

(20.11) wy, = ck and approximates it only for kAx < 1 (Fig.20.6).
The general solution has the form (Sect. 12.2.4)

M

fn(t) — ; (Cl+eiwlf + Cl_efiwl l) sin (m(]wﬂ——_f_])) . (2032)

The initial amplitudes and velocities are

a . )
fut=0)= ; (Ciy + C-) sin (mm) = Fu

d uo , 7l
3 It =0,00) = ;m (C14 — Ci_)sin (mm) =Gy (20.33)

with F,, and G, given. Different eigenfunctions of a tridiagonal matrix are mutually
orthogonal

a . ml ) xl’ M
Z sin{m———|)sin{m—— ) = —d (20.34)
— M+1 M +1 2

and the coefficients C;+ follow from a discrete Fourier transformation:
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M
Fp=—

1 . 7l
M Z sin (mm) Fm

m=1
M M
1 . wl’ ) wl 1
=u E E (Cpy +Cp_)sin (mM+1)51n (mm) = E(CH_—FCI_)

(20.35)
M
— 1 . 7l
G1=MZsm(m 1) n
m=1
_Ls S, €1y — Cr)si ™Y gin (m—"") = Ly - )
_Mm_”/_llwl I+ 7—) sin mM+] sin mM+1 _21w1 I+ 1—
(20.36)
-1~
—F+—
Ci+ 1+l.le1
I
Ci_=F ——Gj. (20.37)
iw;
Finally the explicit solution of the wave equation is
u G, ml
= . .
() = 2(Fjcos(wpt) + —sin(w; t))sin{ m——— ) . 20.38
fu®) =D 2(F (i 1) + - sin(r 1) (M+1) (20.38)

=1

Periodic or open boundaries can be treated similarly as the matrices can be diag-
onalized exactly (Sect. 10.3). For moving boundaries the expansion coefficients are
time dependent (Sect. 12.2.4).

20.4 Discretization of Space and Time

Using the finite difference expression also for the second time derivative the fully
discretized wave equation is

f@&+ At,x)+ f(t — At,x) —2f(t, x)

Ar?
t, A t,x — Ax) —2f(t,
_ czf( x+Ax)+ f(t,x X) [t x) + O(sz, Atz). (20.39)
Ax?
For a plane wave
f = eltwr=ko (20.40)

we find
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Fig. 20.7 (Dispersion of the ‘ \
discrete wave equation) Only ’
for « = 1 or for small values
of kAx and wAt is the
dispersion approximately
linear. For a < 1 only
frequencies

W < Wmax = 2arcsin(a)/At
are allowed whereas for

a > 1 the range of k-values 0.5
is bounded by

kmax = 2 arcsin(1/a)/Ax

WA/2

L a<1 E

k Ax /2

2
, At

iwAt + —iwAr 2—¢ 5
Ax

e e (A e —2) (20.41)

which can be written as

. WAt . kAx
sin - = asin - (20.42)

with the so-called Courant-number [243]

At
a=c—. (20.43)
Ax

From (20.42) we see that the dispersion relation is linear only for « = 1. For
a= 1 not all values of w and k allowed (Fig.20.7).

20.5 Numerical Integration with a Two-Step Method

We solve the discrete wave equation (20.39) with fixed or open boundaries for

f+ At x) =21, x)(1 — ) + o> (f(t, x + Ax) + f(t, x — Ax))
— f(t — A1, x) + O(Ar?, Ax?) (20.44)

on the regular grids

Xp=mAx m=1,2...M (20.45)

th=nAt n=1,2...N (20.46)
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I ftn, x1)
f,.=| : |= : (20.47)

fll’/ll f(tna -XM)
by applying the iteration
it =2(1—a)fr+ P fo +alfr — . (20.48)

This is a two-step method which can be rewritten as a one-step method of double
dimension

£} o B0\ (2+02M 1) [ f,
(%)= ()= G ) 204

with the tridiagonal matrix

-2 aq
1 -2 1
M= | (20.50)
1 =21
ayn -2
where a;and ay have the values 1 for a fixed or 2 for an open end.
The matrix M has eigenvalues (Sect. 10.3)

kA
A = 2cos(kAx) — 2 = —4sin? (Tx) . (20.51)

To simulate excitation of waves by a moving boundary we add one grid point with
given elongation &y(#) and change the first equation into

Ftart, x1) = 2(1—=a?) f(ty, x1) + 02 f (tn, X2) + & (t) — f (a1, X1). (20.52)

Repeated iteration gives the series of function values

f1 f2 _ f1 f3 2 fl
(fO) ’ (fl) _T(fo) ’ (fz) =T (fo) o (20.53)

A necessary condition for stability is that all eigenvalues of 7 have absolute values
smaller than one. Otherwise small perturbations would be amplified. The eigenvalue
equation for 7 is

2 _ _
(2+0‘1M “_;_) (:)z(g) (20.54)
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Fig. 20.8 (Stability regions 4
of the two-step method)
Instabilities appear for

|a| > 1. One of the two
eigenvalues o becomes
unstable (|o| > 1) for waves

ith 1 k-val 2

with large k-values 5ol o211 )
1 0?<1.0

0 | | |
0 1 2 3 4

k Ax
We substitute the solution of the second equation

u=ov (20.55)

into the first equation and use the eigenvectors of M (Sect. 10.3) to obtain the eigen-
value equation

Q+a*N—o)ov—v=0. (20.56)
Hence o is one of the two roots of
ol —o(@* +2)+1=0 (20.57)

which are given by (Fig.20.8)

2\ 2\ 2
c=14+224 (22 40) -1 (20.58)
2 2
From
kA
A= —4sin? (—x)
2
we find
—4<)X<0 (20.59)

2
A
1—2a2<0‘7+1 <1 (20.60)
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and the square root in (20.58) is imaginary if

2
A
—1< O‘T fl<1 (20.61)

which is the case for
kA
sin? (Tx) o? < 1. (20.62)
This holds for all k only if

la] < 1. (20.63)

But then

2 22\ a’) :
o] =(1+7) + 1_(T+1) —1 (20.64)

and the algorithm is (conditionally) stable. If on the other hand |«| > 1 then for
some k-values the square root is real. Here we have

2)
1+ O‘T <1 (20.65)
and finally
2\ 20\ 2
1+O‘T— (1+O‘T)—1<—1 (20.66)

which shows that instabilities are possible in this case.

20.6 Reduction to a First Order Differential Equation

A general method to reduce the order of an ordinary differential equation (or a
system of such) introduces the time derivatives as additional variables (Chap. 13).
The spatially discretized one-dimensional wave equation (20.22) can be transformed
into a system of double dimension

d
Ef(t) =v(t) (20.67)
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2

d
—v(t) =

” 2 — Mf(t) +S(). (20.68)

We use the improved Euler method (Sect. 13.5)

f(r + A1) =) +v(t + %)m + 0(Ar) (20.69)

2

vt + At) = v(t) + [ ¢ SME(t + —) +S(t + —)} At + O(AP)  (20.70)

and two different time grids

f, =f(,) S, =S) n=0,1... (20.71)
f(tnr) = £(0) +V{tuyrp) At (20.72)
Vo =V(tyop) n=0,1... (20.73)

2

V() = V(b 1/2)+[ . Mf(tn>+S(rn)} (20.74)

We obtain a leapfrog (Fig.20.9) like algorithm (p. 398)

c?
Vo1 =V + I:A 2an +S i| (2075)
£, =, + v, At (20.76)

where the updated velocity (20.75) has to be inserted into (20.76). This can be
combined into the iteration

(fn+l ) B f, +vnAt+[ > Mf, + S, ]Aﬂ - 14 CiffM At (fn)+(snmz)
Vnt1 Vo + [FMf” +Sn] At %M 1 Vn S, At

(20.77)

Fig. 20.9 Leapfrog method (n-1/2)At (n+1/2) At
V-1 Vi Vi

v

(n-1)At  nAt (n+1) At
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Since the velocity appears explicitly we can easily add a velocity dependent damp-
ing like

—YV(ty, Xm) (20.78)

which we approximate by
At
_’Yv(tn - 7 ) xm) (2079)

under the assumption of weak damping
YA KL 1. (20.80)

To study the stability of this algorithm we consider the homogeneous problem
with fixed boundaries. With the Courant number o = CA—AX’ (20.77) becomes

1+a’M  At(l —yAt
(f"+1)=( e (=7 )) (f) (20.81)
Vi+1 A_ZM 1-— ’YAI Va
Using the eigenvectors and eigenvalues of M (Sect. 10.3)
kA
A = —4sin? (Tx) (20.82)

we find the following equation for the eigenvalues o

(14 a’*\—o)u+ At(1 —~yAHv =0
a®\u+ At(1 — At — o)v = 0. (20.83)

Solving the second equation for # and substituting into the first equation we have
) At
[(1+« /\_U)—Z)\(l —yAt — o)+ At(1 —vA1)] =0 (20.84)
—«

hence
(14X —0)(1 —yALt — 0) — a* M1 —yA1) =0
0 — 02 —yAt+a*N) + (1 —~vA) =0
! 7At+o‘zki\/1 LAY (1 = ~vA1) (20.85)
oco=1-—— 4+ — -+ —) - U= . .
2 2 2 2 7

Instabilities are possible if the square rootisreal and o < —1. (0 > 1 is not possible).
This is the case for

At At a2\ At
1+ 22 N T < 1—77+0‘ < JT—7 A1~ 1—7T (20.86)

2 2
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2)\
24 yAr < O‘T <0. (20.87)

The right inequality is satisfied, hence it remains

kA At
o? sin’ (Tx) <1- 77 (20.88)

This holds for all k-values if it holds for the maximum of the sine-function

At
o <1— 77 (20.89)

This shows that inclusion of the damping term even favors instabilities.

20.7 Two Variable Method

For the 1-dimensional wave equation (20.11) there exists another possibility to reduce
the order of the time derivative by splitting it up into two first order equations similar
to (20.9, 20.10)

) )
Ef(t,x) = ca—xg(t,x) (20.90)
0 o)

Several algorithms can be applied to solve these equations [254]. We discuss only
methods which are second order in space and time and are rather general methods
to solve partial differential equations. The boundary conditions need some special
care. For closed boundaries with f(xp) = 0 obviously %—{(xo) = 0 whereas %(xo)
is finite. Hence a closed boundary for f (¢, x) is connected with an open boundary
for g(z, x) with g—i(xo) = 0 and vice versa. This is well known from acoustics
(Fig.20.10).

Fig. 20.10 (Standing waves in an organ pipe) At the closed (Left) end the amplitude of the longi-
tudinal velocity is zero whereas the amplitudes of pressure and density changes are extremal. This
is reversed at the open (Right) end
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20.7.1 Leapfrog Scheme

We use symmetric differences (Sect. 3.2) for the first derivatives

fa+5,0)— ft -3, x) ZCQ(I,X+A—2")—9(X—A—2X)

O(Ax?, Ar?
At Ax +0(4x )

(20.92)

A A Ax X
g+ 5.x) =gt = 5.%) =Cf(t,x+7)—f(X—A7 + 0(Ax?, Ar?)

At Ax
(20.93)

to obtain the following scheme

g((tVlJr]/Zy xm+‘/2) = g([nfl/u xm+‘/2) +a (f (s Xm1)) — f (s Xim—1) (20.94)
f(tn-‘rl ) xm) = f(tn’ xm) + « (g(tn+1/2s xm+1/2) - g((tn-ﬁ-l/z’ xm—l/z)) . (2095)

Using different time grids for the two variables

Vit Sty x1) 9 9((Tn—rpas X172)

£,=| : : _
f[lr/ll f(tnv Xm) 924 g(t,,,l/z,xM,l/z)

this translates into the algorithm (Fig.20.11)

gt =g +a(fn—fa) (20.97)
It = fata(gnth — o) = fata(gh — gh) +a> (s =2fm+ Fn)-
(20.98)

Fig. 20.11 (Simulation with ‘ ‘ ‘ ‘
the leapfrog method) A | 1000 steps ]
rectangular pulse is
simulated with the
two-variable leapfrog
method. While for o = 1 the
pulse shape has not changed
after 1000 steps, for smaller
values the short wavelength
components are lost due to
dispersion

A..AAAAHA“A“\IIAAAAA
vvvvvvvvyvvvvvvvvvvv

Q
Il
=
o

amplitude

0 50 100
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To analyze the stability we insert
ikm A ikm A
’Z — ueanel maAax g’}; — veanel mAax (20.99)
and obtain the equations

Gv = v+ au(l — e k4% (20.100)
Gu =u+ avE*® — 1) + a’u(2coskAx — 2) (20.101)

which in matrix form read

ikAx
6(1) = (“FrEma e DY (1)

The maximum amplification factor G is given by the largest eigenvalue, which is
one of the roots of

_2,2kAx_ B 2,zkAx_
(1 — 4« sin — o)(1 — o) 4+ 4a” sin - )=

1—c4+a*X)(1—0)—a’X =0 (20.103)

o=1-2a"sin’ (M—x) + \/<1 — 2a2 sin? (M—x))z -1 (20.104)
= 5 5 ) .

The eigenvalues coincide with those of the two-step method (20.58).

20.7.2 Lax—Wendroff Scheme

The Lax—Wendroff scheme can be derived from the Taylor series expansion

Of(t, x) 1 L2 f(t, x)

_ 10

f+At,x) = f(t,x) + o At+2At o
Og(t,x) A0 f(t, x)

= f(t,x) 4+ cAt Ee + 7 i (20.105)

. dg(t, x) 1 2629(t,x)
g(l+Al,X)—g([,.X)+ ot At+§AtT+

2442 92

gt x) + ca L EX) | AT 590, x) (20.106)

Ox 2 ot?
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It uses symmetric differences on regular grids (20.45, 20.46) to obtain the iteration

n _ n, n + 117 _2 ,Z
St = f oAttt 2arte zfA’”x; / (20.107)
n  __ fn n + gt — 2"
gt =g + carlmtr = In- + 2 A It T Imot = 2 (20.108)

2Ax 2Ax2

! 1+%M 4D £
( n+1)=( e szM)( ) (20.100)
g 3 + 5 g

with the tridiagonal matrix

0 1
-10 1
D=1 TR I (20.110)
-1 01
-10
To analyze the stability we insert

fr::l — MeaneikmAx gz — veaneikmAx (201 1 1)

and calculate the eigenvalues (compare with 20.102) of

1+ o?(coskAx — 1) iasinkAx
( i sin k Ax 1+ o?(coskAx — 1) (20.112)
which are given by
o =1+ a*(coskAx — 1) £ Va2(cos? kAx — 1). (20.113)

The root is always imaginary and
lol> =1+ (o* — a®)(coskAx — 1)> < 1+ 4(a* — a?).

For o < 1 we find |o| < 1. The method is stable but there is wavelength dependent
damping (Figs.20.12 and 20.13).
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Fig. 20.12 (Stability region 2
of the Lax—Wendroff
method) Instabilities appear
for || > 1. In the opposite 15k
case short wavelength modes ’
are damped
5 1
o’ =08
0.5 -
o’=05
0 | | |
0 1 2 3
k Ax
Fig. 20.13 (Simulation with ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
the Lax—Wendroff method) | 2000 steps 1
A rectangular pulse is /\ /\
simulated with the r 0=1.0 4 A i
two-variable Lax—Wendroff 0=0.95-
method. While for o = 1 the %; I 0.8
pulse shape has not changed A= 0=
after 2000 steps, for smaller g 0.5 N
values the short wavelength s
components are lost due to
dispersion and dampin
p ping . N ])“\/
| . \/\ L | L | L |
-100 -50 0 50 100
time
20.7.3 Crank-Nicolson Scheme
This method takes the average of the explicit and implicit Euler methods
¢ (0g dg
f+A)=fO)+ 5| 5= x)+ =+ At,x) ) At (20.114)
2 \ Ox 0x
c (0 0
g+ a0 = g0+ S (Lo + L+ an0) an (20.115)
2 \ Ox 0x

and uses symmetric differences on the regular grids (20.45, 20.46) to obtain

n n a n n n n
it = fot 7 G — G + 65 = 6050) (20.116)
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(6% n n
9,’,2“ = g:;l + Z ( nZJrl - nzfl + fmi% - fmt%) (20.117)

which reads in matrix notation

c1)= (o) (@) () (2)
(. (., . 20.118
(gn+l ZDl 2n ZD Zn+1 ( )

This equation can be solved formally by collecting terms at time f,, 1

—ap\ (f 1 2D\ (f
4 L - 4 " 20.119
(_ D 1 )(g”‘H) (%D 1 )(gn) ( )

and multiplying with the inverse matrix from left

o -1 o
(f"+1)=( ! _ZD) (al 4D)(f"). (20.120)
Sn+1 -7 1 ZD 1 gn
Now, if u is an eigenvector of D with purely imaginary eigenvalue X (Sect. 10.3)
1 ¢D u (1+£%Mu « u
4 — 4 = =

(o) (5)- (G 0= (s)

and furthermore

1 -4 u) (I1F2M)u _ o u
(—%D 1 )(:I:u)_((_%)\;l)u)—(l$4/\)(iu). (20.122)

But, since the eigenvalue of the inverse matrix is the reciprocal of the eigenvalue,
the eigenvalues of

-1
ap 1 ¢D
_ 4 1
T_( p 1 ) (%D | ) (20.123)

are given by

B2 —

EN (ol

1+ 92
g = .
LFZA

(20.124)

Since )\ is imaginary, we find |o| = 1. The Crank—Nicolson method is stable and does
not show damping like the Lax—Wendroff method. However, there is considerable
dispersion. Solution of the linear system (20.119) is complicated and can be replaced
by an iterative predictor-corrector method. Starting from the initial guess

0et) = (7))
) — n 20.125
(oe) = (5 ) (& @129
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we iterate
(o) =3 () +5 (6) = (o ) (2)
(O)gn+l/2 o 2 (O)gn-H 2 )gn o %D 1 2n
((l)fn+1) _ (fn)+( %D) (<°>f,,+l/2)
(l)gnJrl &n %D (O)gnJr'/z
1 4D\ [(f apy (Of
=4 ") 4 4 "“) 20.126
(o 7)) (10 ™) (e o120
(o) =3 (2) 3 (o) = (@) + (50 ™7) (we)
(l)ng—‘/z 2 (l)gn+1 En %D )gn+1/2
(20.127)
oet) = () + (a0 77) (o))
n — n + N 2 n+1/2
((Z)gn-H 2n ED (l)gn+1/2
1 ¢D f <D e 1
= .. * ")+ an ? )( nt . 20.128
(5 7))+ (20 ™) (g o

In principle this iteration could be repeated more times, but as Teukolsky showed
[255], two iterations are optimal for hyperbolic equations like the advection or wave
equation. The region of stability is reduced (Figs.20.14 and 20.15) compared to the
implicit Crank—Nicolson method. The eigenvalues are

g =1+iasinkax | Qo] > 1

Dy =1 +iasinkAx — % sinfkax Vol > 1

Fig. 20.14 (Simulation with
the iterated Crank—Nicolson
method) A rectangular pulse
is simulated with the
two-variable iterated
Crank—Nicolson method.
Only this method is stable
for values o > 1

2

amplitude

(20.129)

(20.130)

15F ‘ ‘ ‘ ‘ ‘ T
1000 steps
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Fig. 20.15 (Simulation of a 1 w w X
triangular pulse) A triangular
pulse is simulated with
different two-variable
methods (dashed curve

o
o

initial conditions, red 3 06
=
leaptrog, blue £
= [
Lax—Wendroff, green % 04

iterated Crank—Nicolson).
This pulse contains less short
wavelength components than
the square pulse and shows
much less deformation even
after 5000 steps

o
o

T T T
5000 steps |

o) ot 2 . . a3 sin® kAx
oc=1-— ?sm kAx £i(asinkAx — — 1

a*sin*kAx  a®sin®kAx

Dol =1
4 16

< 1for|al < 2.

Problems

Problem 20.1 Waves on a Damped String

(20.131)

In this computer experiment we simulate waves on a string with a moving boundary

with the method from Sect. 20.6.

e Excite the left boundary with a continuous sine function and try to generate stand-

ing waves
Increase the velocity until instabilities appear
Compare reflection at open and fixed right boundary

Observe reflection at the boundary x = 0

Problem 20.2 Waves with the Fourier Transform Method

Observe the dispersion of pulses with different shape and duration
The velocity can be changed by a factor n (refractive index) in the region x > 0.

In this computer experiment we use the method from Sect. 20.3 to simulate waves

on a string with fixed boundaries.
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e Different initial excitations of the string can be selected
e The dispersion can be switched off by using wy = ck instead of the proper eigen-
values (20.31)

Problem 20.3 Two Variable Methods

In this computer experiment we simulate waves with periodic boundary conditions.
Different initial values (rectangular, triangular or Gaussian pulses of different widths)
and methods (leapfrog, Lax—Wendroff, iterated Crank—Nicolson) can be compared.



Chapter 21
Diffusion

Diffusion is one of the simplest non-equilibrium processes. It describes the transport
of heat [256, 257] and the time evolution of differences in substance concentrations
[258]. In this chapter; the one-dimensional diffusion equation

e —Da2 t S(t 211
5f(,x)— @f(,x)-i- (t, x) (21.1)

is semi-discretized with finite differences. The time integration is performed with three
different Euler methods. The explicit Euler method is conditionally stable only for
small Courant number o« = Z—f{ < /2, which makes very small time steps necessary.
The fully implicit method is unconditionally stable but its dispersion deviates largely
fromthe exact expression. The Crank—Nicolson method is also unconditionally stable.
However, it is more accurate and its dispersion relation is closer to the exact one.
Extension to more than one dimension is easily possible, but the numerical effort
increases drastically as there is no formulation involving simple tridiagonal matrices
like in one dimension. The split operator approximation uses the one-dimensional
method independently for each dimension. It is very efficient with almost no loss in
accuracy. In a computer experiment the different schemes are compared for diffusion

in two dimensions.

21.1 Particle Flux and Concentration Changes

Let f(x, ) denote the concentration of a particle species and J the corresponding
flux of particles. Consider a small cube with volume 4* (Fig.21.1). The change
of the number of particles within this volume is given by the integral form of the
conservation law (12.10)

2/dv f(r, t)+f I, t)dA:/dV S(r, 1) 21.2)
5‘t 174 ov \%4
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Fig. 21.1 Flux through a h
volume element JAz + E)
h
4/‘\7/ Jy(y + E)
h
h
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2
/ JX(X +§)
h
h
h
Ly-1)
Jz(Z - % )

where the source term S(r) accounts for creation or destruction of particles due to
for instance chemical reactions. In Cartesian coordinates we have

x+h/2 y+h/2 +h/2 D)
/ dx’/ dy// d7 (—f(x’,y’,z’,t) - S(x’,y/,z’,t))
x—h/2 y—h/2 —h/2 ot
x+h/2 y+h/2 h h
+/ dx’/ dy' (JZ(X’, Viz4+ 7)) =Ly 2 — —))
x—h/2 y—h/2 2 2
x+h/2 z+h/2 h h
* / dx,/ dz (Jy<x’, N R A Z/))
x—h/2 2—h/2 2 2
z+h/2 y+h/2 h h
+/ dz// dy, (Jz(x+_’ yl,Z/)_Jz(x__, y/’ Z/)) =0. (213)
—h)2 y—h/2 2 2

In the limit of small % this turns into the differential form of the conservation law

h3 — h2 h y h z O 1
( tf(x, V,Z,[) S(X,y,Z,[))+ ( _+h_y —+ ) (2 4)

or after division by h?

gf(rv t):_diVJ(ra t)+S(rv t)- (2]5)

Within the framework of linear response theory the flux is proportional to the gradient

of £ (Fig.21.2),
(21.6)

J=—D grad f.
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Fig. 21.2 Diftusion due to a (] o
concentration gradient o o ® o
° ® ¢
[ L
) [ ] L
o0 4 -
o ! ®
e O o
[ L
[ ] [ ® Y
Together we obtain the diffusion equation
0
8_]; =div(Dgradf) + S (21.7)
which in the special case of constant D simplifies to
0
a—{:DAvaS. (21.8)

21.2 Diffusion in One Dimension

We will use the finite differences method which works well if the diffusion constant
D is constant in time and space. We begin with diffusion in one dimension and use
regular grids t, = nAt, x,, = mAx, f; = f(t,, x,) and the discretized second
derivative

(?z_f _fx+Ax) + fx — Ax) =2 f(x)

pea s +0(Ax%) (21.9)

to obtain the semi-discrete diffusion equation

D
S, xm) = 2 (f @ xmr) + [ X)) = 21, X)) + S, Xm) (21.10)
or in matrix notation
i) = -2 Mt + 8¢ 21.11
()—A—x2 () +S(@) (21.11)

with the tridiagonal matrix
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M XM

Fig.21.3 (Boundary conditions for 1-dimensional diffusion) Additional boundary points xq, X741
are used to realize the boundary conditions, (a) Dirichlet boundary conditions the function val-
ues at the boundary are given f(z, x0) = &o(?) a%f(xl) = < (f(x2) =21 (x1) + &)
or f(t.xps1) = Emp1 (). L3 fGm) = 55 (F@m-1) = 2 Gar) + Epr1 (1), (b) Neumann
boundary conditions the flux through the boundary is given, hence the derivative g—f at the
boundary (1. x0) = £(1.x2) +24 J1(1) 25 (1) = 5y (2 (2) = 2f (1) + 255 11 (1)) or

FoxpeD) = fxm—)=225 Ty () 25 ) = 4 (2F Q1) = 2 (o) — 285 Ty (1),
(c) No-flow boundary conditions there is no flux through the boundary, hence the deriva-
. 2

tive % = 0 at the boundary f(z,x0) = f(t,x2) %f(xl) = ﬁ(Zf(xz)fo(xl)) or

Fxm) = fxumd) L) = 5o @F Garm1) = 2f (o))

-2 1

M= ST . (21.12)

Boundary conditions can be taken into account by introducing extra boundary
points xo, x4+ (Fig.21.3).



21.2 Diffusion in One Dimension

21.2.1 Explicit Euler (Forward Time Centered Space)

Scheme

A simple Euler step (13.3) makes the approximation

483

f”“—fn_f(f X )At—Dﬂ(f" + 1" _Zf")—|—S”At (21.13)
m m = ns tm - Ax2 m+1 m—1 m m . .

For homogeneous boundary conditions f = 0 this becomes in matrix form

! f\ [ Siar
: =A| : + : (21.14)
1’;1“ I Sy At
with the tridiagonal matrix
A A
RE b,
Di, 1-2D4,
DA, 1—-2D2Y, 2
D&, 1-2D2,
(21.15)
where « is the Courant number for diffusion
D At (21.16)
a=D——:. .
Ax?
The eigenvalues of M are (compare 20.30)
kA 2 M
A= —4sin? (=) withkAx = ——, = 2T 21.17)
2 M+1 M+1 M+ 1
and hence the eigenvalues of A are given by
kA
1+a)\:1—4asin27x. (21.18)
The algorithm is stable if
[1+a) <1 forall A (21.19)

which holds if
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kA
—1 <1 —4asin? Tx <1 (21.20)

The maximum of the sine function is sin(%) ~ 1. Hence the right hand inequa-
tion is satisfied and from the left one we have

—1<1-4a. (21.21)

The algorithm is stable for

D Al ! (21.22)
=D— < . .
“ Ax?2 2
The dispersion relation follows from inserting a plane wave ansatz
i . kA
&4 = | — 4q sin? (Tx) . (21.23)

For v > 1/4 the right hand side changes sign at

/1
k.Ax = 2arcsin,/ —. (21.24)
4o

The imaginary part of w has a singularity at k. and the real part has a finite value of
m for k > k. (Fig.21.4). Deviations from the exact dispersion

w = ik? (21.25)

are large, except for very small .

Fig. 21.4 (Dispersion of the
explicit Euler method) The
dispersion of the explicit
method is shown for different
values of the Courant
number « and compared to
the exact dispersion (dashed
curve). The imaginary part
of w shows a singularity for
« > 1/4. Above the
singularity w is complex
valued

Im (0 At) /o

k Ax
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21.2.2 Implicit Euler (Backward Time Centered Space)

Scheme

Next we use the backward difference

frZ_H - fnn1 = f(tn+lvx171)At

O*f
= D—=(tys1, Xm) At + S(typ1, X)) At
Ox2

to obtain the implicit method

it —a(fai + okt =200 = S+ spt A
or in matrix notation

At =f,4+S,11Ar withA=1—-aM
which can be solved formally by

£, =A'f, + A7'S, AL

The eigenvalues of A are
kA
AA) = 1 +4asin27x =1
and the eigenvalues of A~

1
XA HY= )= ——
S (A) 1 + 4o sin? 442

The implicit method is unconditionally stable since

IMATH] < 1.

The dispersion relation of the implicit scheme follows from

eiwAI _ 1

1+ 4asin? (£42)°

485

(21.26)

(21.27)

(21.28)

(21.29)

(21.30)

(21.31)

(21.32)

(21.33)

There is no singularity and w is purely imaginary. Still, deviations from the exact

expression are large (Fig.21.5).
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Fig. 21.5 (Dispersion of the
implicit Euler method) The
dispersion of the fully
implicit method is shown for
two different values of the
Courant number « and
compared to the exact
dispersion (dashed curve)

Im (0 At) /o

Formally a matrix inversion is necessary. Numerically it is much more efficient
to solve the tridiagonal system of equations (page 75).

(I —aM) (1) = f(tn) + S(tag 1) Ar. (21.34)

21.2.3 Crank—Nicolson Method

The Crank—Nicolson method [259] which is often used for diffusion problems, com-
bines implicit and explicit methods. It uses the Heun method (Sect. 13.5) for the time
integration

At (0 0
f,:,H_] - fmn = 7 (8_{(tn+l, -xm) + a_{(tn’ xm)) (2135)
At (O*f *f At

= D? @(Z‘n-&-lv Xm) + ﬁ(tna Xm) )+ (S, X) + S(tgr, X)) 7
(21.36)

IV R Y N AR o o Y AR W W

- D?( Ax? + Ax? + Al
(21.37)

This approximation is second order both in time and space and becomes in matrix
notation
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Sn + Sn+1

(1 _ gM) £, = (1 n gM) f, + At (21.38)
2 2 2

which can be solved by

a -l @ a \NUS, + S,
for=(1=5m) (14 SM) 6+ (1= M) 22 an (2139
+1 > +5 + 5 > ( )
Again it is numerically much more efficient to solve the tridiagonal system of
equations (21.38) than to calculate the inverse matrix.
The eigenvalues of this method are

1+ 5p

1—3p

A=

kA
with 1 = —4 sin? Tx € [—4,0]. (21.40)

Since ap < 0 it follows

a «
14+ = 1 —— 21.41
+ < oM ( )

and hence
A< 1. (21.42)

On the other hand we have

1> —1 (21.43)
(67 [0

1+ %142 21.44

+gu>—l+ o (2144)

A> —1. (21.45)

This shows that the Crank—Nicolson method is stable [260]. The dispersion follows
from
-2 (kAx
eiwdl _ 1 — 2asin (—)

= 27 21.46
1 + 2asin? (£4%) (2140

2
2

For o > 1/2 there is a sign change of the right hand side at

/1
k.Ax = 2arcsin,/ —. (21.47)
2c

The imaginary part of w has a singularity at k. and w is complex valued for k > k.
(Fig.21.6).
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Fig. 21.6 (Dispersion of the
Crank—Nicolson method)
The dispersion of the
Crank—Nicolson method is
shown for different values of
the Courant number « and
compared to the exact
dispersion (dashed curve).
The imaginary part of w
shows a singularity for

a > 1/2. Above the
singularity w is complex
valued. The exact dispersion
is approached quite closely
for a & 12

21

Diffusion

Im (0 At) /o

k Ax

21.2.4 Error Order Analysis

Taylor series gives for the exact solution

Afexact = Aff(t x) + A—f(t X))+ — Ar

3

- 83f(t LX)

7 Atz ;1 G
t [Df"(t,x)+ St x)| + - [Df"(t,x)+ S(t,x)] +

whereas for the explicit method

Afoxpr = aMf(t,x) + S(t, x) At

:DAA—;2 (ft, x4+ Ax)+ f(t,x — Ax) =2 f(¢, x)) + S(¢, x) At.

= DAA_ (Ax e+ 5 f””(t x) 4+ ) + 5@, A

= Afexac
Sexact + D

DAt Ax?

" Atz r
e x) — Tf(fvx)-i-'“

and for the implicit method

Afimp = aMf(t + At, x) + S(t + At, x) At

= A (ft+ At,x + Ax)+ f(t + At,x — Ax) — 2 f(t + At, x))

A A2

(21.48)

(21.49)
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+S(t + At, x) At

At , Axt
= DE (szf/(t,x) + ?fm (r,x) + )
Atz 2 4 Ax4 ;I C 2
181, ) At + D= [ AX2 (1, x) + S (1, x) 4+ - ) 4+ S(1, x) At
Ax? 12
Atsz " 1 2 7
= Afexaer + D B f (t,x)+§Af f,x)+---. (21.50)

The Crank—Nicolson method has higher accuracy in At:

Afexpt + Afim DAt Ax? AP D
Afey = fplz Jimpl _ 5 f””(z,x)—Ta—ng-.-. (21.51)

21.2.5 Finite Element Discretization

In one dimension discretization with finite differences is very similar to discretization
with finite elements, if Galerkin’s method is applied on a regular grid (Chap. 12). The
only difference is the non-diagonal form of the mass-matrix which has to be applied
to the time derivative [147]. Implementation of the discretization scheme (12.170)
is straightforward. The semi-discrete diffusion equation becomes

d (1 2 1
E (Ef(ts Xm—1) + gf(l‘,.xm) + gf([s xm+l))
D
=~ (S Xn) + £ ) = 26 (1 30)) + S(2, %) (21.52)

or in matrix form

1 : D
(1 + 6Mz) B(1) = -5 Maf (1) +8(0). (21.53)

This can be combined with the Crank—Nicolson scheme to obtain

1 o o At
(1 + EMZ) (Crr = 10) = (FMls + SMobri1) + 5 (S, + 800 2154)

or

1 « 1 « At
[1 + (6 - E) M21| fn+1 - |:1 + (6 + 5) M21| fn + 7 (Sn + SnJrl)-

(21.55)
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21.3 Split-Operator Method for Multidimensions

The simplest discretization of the Laplace operator in 3 dimensions is given by

> D
Af:(@+a—+—)f(tx Y, 2)

1
= M+ My + M) f(t.x,y.2) (21.56)

where

f,x+Ax,y, 2+ f(t,x — Ax,y,2) = 2f(t,x,y,2)
a2 Maf @ x,y,2) = 2
(21.57)

etc. denote the discretized second derivatives. Generalization of the Crank—Nicolson
method for the 3-dimensional problem gives

fltnr)) = (1—%Mx —%M),—%MZ)_ (1+ M.+ 2M + M) £
(21.58)

But now the matrices representing the operators M., M, M are not tridiagonal. To
keep the advantages of tridiagonal matrices we use the approximations

) (1+ %My) (1+5

2 2
MZ) ~ (1 — %Mx> (1 — %My) (1 - %MZ) (21.60)

and rearrange the factors to obtain

= (1= ) (o) (1 o) (1 ) (- ) (14 3) s

(21.61)

. : Mz) (21.59)

o «
(1——M VR

«Q (07 « OZ
(1+—Mx+—My+2MZ) (1+
«
) 2

which represents successive application of the 1-dimensional scheme for the three
directions separately. The last step was possible since the operators M; and M ; for
different directions i =/ j commute. For instance

MXM)’fZMx (f(xvy—i_Ax)—i_f(x?y_Ax)_zf(-xv )’))
=(f(x+Ax,y+ Ay) + f(x — Ax,y + Ax)
—2f(x,y+ Ax) + f(x + Ax, y — Ax)
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+ f(x — Ax,y — Ax) = 2f(x,y — Ax)
=2f(x+Ax,y) =2f(x — Ax,y) +4f(x,y))
=M,M,f. (21.62)

The Taylor series of (21.58) and (21.61) coincide up to second order with respect to
aM;:

(= = 3ae) ™ (s )
2

:1+a(Mx+My+MZ)—|—%(Mx+My+MZ)2+O(a3) (21.63)

(=) (e D) (1= Do) (1 ) (1= o) (14 )

2
2202 2 z
M aM a“M
:(l—i—aMx—l—azx)(l—FaMy—i— 5 )(1+aMZ+ 5 )—|—0(a3)

2
=1+ a(My + My + M) + — (My + My + M) + 0. (21.64)

Hence we have

DA

Ax? 2
for1 =1+ DAt AJFTA +o )+

DAt S, Sy
+(1+TA+-~)%A

Ar? )
= f. 4+ At(DAf, + S,) + T(DZA2 + DAS, + §,) + O(AtAx?, AP).
(21.65)

and the error order is conserved by the split operator method.

Problems

Problem 21.1 Diffusion in 2 Dimensions

In this computer experiment we solve the diffusion equation on a two dimensional
grid for

e an initial distribution f(r = 0, x, y) = dx 00,0
e aconstant source f(t =0) =0, S, x,y) = 0x00y0

Compare implicit, explicit and Crank—Nicolson method.




Chapter 22
Nonlinear Systems

Nonlinear problems [261, 262] are of interest to physicists, mathematicians and
also engineers. Nonlinear equations are difficult to solve and give rise to interesting
phenomena like indeterministic behavior, multistability or formation of patterns in
time and space. In the following we discuss recurrence relations like an iterated
function [263]

Xngp1 = f(xn) (22.1)

systems of ordinary differential equations like population dynamics models
[264-266]

X)) = f(x,y)
y(@) =g(x,y) (22.2)
or partial differential equations like the reaction diffusion equation [265, 267, 268]

2

0 0
Ec(x, t) = Dﬁc(x, t)+ f(c) (22.3)

where f and g are nonlinear in the mathematical sense.'We discuss fixed points of
the logistic mapping and analyze their stability. A bifurcation diagram visualizes
the appearance of period doubling and chaotic behavior as a function of a control
parameter. The Ljapunov exponent helps to distinguish stable fixed points and periods
from chaotic regions. For continuous-time models, the iterated function is replaced by
a system of differential equations. For stable equilibria all eigenvalues of the Jacobian
matrix must have a negative real part. We discuss the Lotka—Volterra model, which
is the simplest model of predator-prey interactions and the Holling-Tanner model,
which incorporates functional response. Finally we allow for spatial inhomogeneity
and include diffusive terms to obtain reaction-diffusion systems, which show the

1Linearfunctions are additive f(x +y) = f(x) + f(y) and homogeneous f(ax) = af(x).
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phenomena of traveling waves and pattern formation. Computer experiments study
orbits and bifurcation diagram of the logistic map, periodic oscillations of the Lotka—

Volterra model, oscillations and limit cycles of the Holling-Tanner model and finally
pattern formation in the diffusive Lotka—Volterra model.

22.1 Iterated Functions

Starting from an initial value xy a function f is iterated repeatedly

x1 = f(xo0)
X2 = f(x1)
Xip1 = f(xp). (22.4)

The sequence of function values xg, x; - - - is called the orbit of xy. It can be visualized
in a 2-dimensional plot by connecting the points

(x0, x1) = (x1, x1) = (x1,x2) = (X2, X2) - -+ = (X;, Xig1) = (Xig1, Xig1)

by straight lines (Fig.22.1).

22.1.1 Fixed Points and Stability

If the equation

x* = f(x*) (22.5)

Fig. 22.1 (Orbit of an y
iterated function) The !
sequence of points (XX o -
(xis Xit1)s (X1, Xig1) 18 72 ]
plotted together with the B o
curves y = f(x) (dashed) (x,x) ,// 2
and y = x (dotted) 0 1

Y
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Fig. 22.2 (Attractive fixed y
point) The orbit of an A Ty
attractive fixed point (XO’X ) o
converges to the intersection - < (X1 ,X1)
of the curves y = x and T e—0
S RISy
(X1 'XZ) k S
L y=fx)
VX
(x,0)

has solutions x*, then these are called fixed points. Consider a point in the vicinity
of a fixed point

x=x"4+¢o (22.6)
and make a Taylor series expansion

f)=f(x"+e0) = f) +eof )+ =x"+er 4 (22.7)
with the notation

el =g f (x¥). (22.8)
2

Repeated iteration gives

M) = f(f(x) = fF+e)+=x"+e f/ ") =x"+e

FO ) =x*+¢, (22.9)

with the sequence of deviations
en=f(MNenr == (f(xM)" .

The orbit moves away from the fixed point for arbitrarily small g if | f/(x*)| > 1
whereas the fixed point is attractive for | f'(x*)| < 1 (Fig.22.2).

Higher order fixed points are defined by iterating f (x) several times. A fixed point
of order n simultaneously solves

2Here and in the following £ denotes an iterated function, not a derivative.
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Fig. 22.3 (Periodic orbit) y
The orbit of an attractive !
fourth order fixed point

cycles through the values

x1 = f(xa), x2 = f(x1),

x3 = f(x2), x4 = f(x3)

o y=X

7 y=f(x)

y

fx* = x*

A E

ACOE S
FP) = x* (22.10)

The iterated function values cycle periodically (Fig.22.3) through
X fO) > fPE TN,
This period is attractive if

L) £ FE) PP £ ")) < L.

22.1.2 The Ljapunov-Exponent

Consider two neighboring orbits with initial values x and x¢ + £o. After n iterations
the distance is

|FCFC- Fo)) = Ff G- floxo + 0] = legle™ (22.11)

with the so called Ljapunov-exponent [269] A which is useful to characterize the
orbit. The Ljapunov-exponent can be determined from

.1 | £ (x0 + €0) — f™ (x0)]
A= lim —1In
n—oo n |50|

(22.12)
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or numerically easier with the approximation

| f (xo + €0) — f(x0)| = leol| £ (x0)]

|f(f (xo +€0) — f(f(xo)| = [(f (x0 + €0) — f(xo)|| f'(xo + €0)|

= leol LS xo) 1 £ (x0 + €0) (22.13)

£ (o 4+ £0) — £ (x0)| = leoll £/ @) LF e0)] -+ | f Gn)] (22.14)

from
-

A= lim - ;ln L/ (xi)]. (22.15)
For a stable fixed point

A—In|f'(x)] <0 (22.16)
and for an attractive period

A= In[f'G5) f1OFa) - )] < 0. (22.17)

Orbits with A < 0 are attractive fixed points or periods. If, on the other hand, A > 0,
the orbit is irregular and very sensitive to the initial conditions, hence is chaotic.

22.1.3 The Logistic Map

A population of animals is observed yearly. The evolution of the population density
N is described in terms of the reproduction rate r by the recurrence relation

Nuyt1=rN, (22.18)

where N, is the population density in year number n. If 7 is constant, an exponential
increase or decrease of N results.

The simplest model for the growth of a population which takes into account that
the resources are limited is the logistic model by Verhulst [270]. He assumed that the
reproduction rate » depends on the population density N in a simple way (Fig.22.4)

r =ro(l N 22.19
=ro(l = —2). (22.19)
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Fig. 22.4 (Reproduction r(N)
rate of the logistic model) At \
low densities the growth rate

has its maximum value rg. At

larger densities the growth o
rate declines and reaches

r =0for N = K. The

parameter K is called

carrying capacity

0 K =N
The Verhulst model (22.19) leads to the iterated nonlinear function
ro D)
Nn+1 = r()Nn - ?Nn (2220)

with rp > 0, K > 0. We denote the quotient of population density and carrying
capacity by the new variable

1
=1 2221
X e ( )

and obtain an equation with only one parameter, the so called logistic mapping

1 1 N,
Xnt+1 = ENanl = ?rONn (l - ?) =710 Xy - (1 —xn). (22.22)

22.1.4 Fixed Points of the Logistic Map

Consider an initial point in the interval
0<x<1. (22.23)

We want to find conditions on r to keep the orbit in this interval. The maximum value
of x,.1 is found from

dxn—H

=r(1—-2x,)=0 (22.24)
dx,

which gives x, = !/2 and max(x,+;) = r/4. If r > 4 then negative x,, appear after
some iterations and the orbit is not bound by a finite interval since
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'T;*;' = 1|1+ xa]) > 1. (22.25)

The fixed point equation

X =rx* —rx*? (22.26)
always has the trivial solution

x*=0 (22.27)
and a further solution

xf=1— - (22.28)

which is only physically reasonable for » > 1, since x should be a positive quantity.
For the logistic mapping the derivative is

fl(x)=r—2rx (22.29)

which for the first fixed point x* = 0 gives | f'(0)| = r. This fixed point is attractive
for 0 < r < 1 and becomes unstable for » > 1. For the second fixed point we have
lf(1— %)| = |2 —r|, which is smaller than one in the interval 1 < r < 3.Forr < 1
no such fixed point exists. Finally, for r; = 3 the first bifurcation appears and higher
order fixed points become stable.

Consider the fixed point of the double iteration

)C* — r(r(x* _ X*Z) o FZ(X* _ X*Z)Z). (2230)

All roots of this fourth order equation can be found since we already know two of
them. The remaining roots are

2 W v |
xXf, = - . (22.31)

They are real valued if
(r—1)2—4>0—>r>3 (or r < —1). (22.32)

For r > 3 the orbit oscillates between x| and x3 until the next period doubling
appears for r, = 1 4+ +/6. With increasing r more and more bifurcations appear and
finally the orbits become chaotic (Fig.22.5).
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Fig. 22.5 (Orbits of the logistic map) Left For 0 < r < 1 the logistic map has the attractive fixed
point x* = 0. Middle In the region 1 < r < 3 this fixed point becomes unstable and another stable
fixed point is at x* = 1 — 1/r. Right For 3 < r < 1 4+ /6 the second order fixed point (22.31) is
stable. For larger values of » more and more bifurcations appear
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Fig. 22.6 (Bifurcation diagram of the logistic map) For different values of r the function is iterated
1100 times. The first 1000 iterations are dropped to allow the trajectory to approach stable fixed
points or periods. The iterated function values xjo00 - - - X1100 are plotted in a r-x diagram together
with the estimate (22.15) of the Ljapunov exponent. The first period doublings appear at » = 3 and
r = 1+ /6. For larger values chaotic behavior is observed and the estimated Ljapunov exponent
becomes positive. In some regions motion is regular again with negative Ljapunov exponent

22.1.5 Bifurcation Diagram

The bifurcation diagram visualizes the appearance of period doubling and chaotic
behavior as a function of the control parameter r (Fig.22.6).
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22.2 Population Dynamics
If time is treated as a continuous variable, the iterated function has to be replaced by

a differential equation

dNn
ol f(N) (22.33)

or, more generally by a system of equations

Ny filNy -+ Ny)
d M| AW N (22.34)
dr | '
N, fa(Ny -+ Ny)

22.2.1 Egquilibria and Stability

The role of the fixed points is now taken over by equilibria, which are solutions of

0= _ rv) (22.35)
= ar = We '

which means roots of f(N). Let us investigate small deviations from equilibrium
with the help of a Taylor series expansion. Inserting

N =Ny +¢ (22.36)
we obtain

d¢ ,

E = f(Neq)+f (Neq)f‘i‘ (2237)

but since f(N,,) = 0, we have approximately

d¢

& v (2.38)

with the solution

£(1) = oexp { f'(Neg)t} . (22.39)

The equilibrium is only stable if Re f'(N,,) < 0, since then small deviations
disappear exponentially. For %e f'(N.,) > 0 deviations will increase, but the
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exponential behavior holds only for not too large deviations and saturation may
appear. If the derivative f'(N,,) has a nonzero imaginary part then oscillations will
be superimposed. For a system of equations the equilibrium is defined by

AW N 0
eq e eq
LN Ny T (22.40)
fu(N{ - N 0
and if such an equilibrium exists, linearization gives
N, N{? &
N, N5? &
.= . +1 . (22.41)
N, N, &n
dfi Of of
de v o | & (22.42)
dr | AR N '
Ofn Ofn O fn
N o on o) \&

The equilibrium is stable if all eigenvalues ); of the derivative matrix have a negative
real part.

22.2.2 The Continuous Logistic Model

The continuous logistic model describes the evolution by the differential equation

dx

T =rox(1 —x). (22.43)

To find possible equilibria we have to solve
Xeg(1 —xeg) =0 (22.44)

which has the two roots x,, = 0 and x,, = 1 (Fig.22.7).
The derivative f” is

d
fx)= P (rox(1 —x)) = ro(1 — 2x). (22.45)

Since f'(0) =rp > 0 and f/(1) = —ry < 0 only the second equilibrium is stable.
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Fig. 22.7 (Equilibria of the
logistic model) The dx
equilibrium x,, = 0 is dt
unstable since an
infinitesimal deviation grows
exponentially in time. The
equilibrium x,, = 1 is stable
since initial deviations
disappear exponentially unstable
stable

Vi
/0 1\x

22.3 Lotka—Volterra Model

The model by Lotka [271] and Volterra [272] is the simplest model of predator-prey
interactions. It has two variables, the density of prey (H) and the density of predators
(P). The overall reproduction rate of each species is given by the difference of the
birth rate r and the mortality rate m

dN ( N

—=0r-m

dr
which both may depend on the population densities. The Lotka—Volterra model
assumes that the prey mortality depends linearly on the predator density and the
predator birth rate is proportional to the prey density

my =aP rp=>bH (22.46)
where a is the predation rate coefficient and b is the reproduction rate of predators per

1 prey eaten. Together we end up with a system of two coupled nonlinear differential
equations

dH

— = f(H,P)=ryH —aHP

dr

dp

EZQ(H’ P)=bHP —mpP (22.47)

where ry is the intrinsic rate of prey population increase and m p the predator mor-
tality rate.
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22.3.1 Stability Analysis

To find equilibria we have to solve the system of equations
f(H,P)=ryH —aHP =0
g(H,P) =bHP —mpP = 0. (22.48)

The first equation is solved by H,, = 0 or by P,; = ry/a. The second equation is
solved by P,, = 0 orby H,, = mp/b. Hence there are two equilibria, the trivial one

Poy=Hy=0 (22.49)

and a nontrivial one

rg mp
P, =2 H, =-L. 22.50
e =" = ( )

Linearization around the zero equilibrium gives

il H+ P P+ (22.51)
= —v . = e .
dr f dr e
This equilibrium is unstable since a small prey population will increase exponentially.
Now expand around the nontrivial equilibrium:

P=Py+¢& H=Hgy+n (22.52)
dn 8f of _amp

E BH + — § (ra —aPy)n —aH,& = b 13 (22.53)
df 89 - bi"[-]

% = 9" n+ —ff bPyyn+ (bHyy —mp)§ = - (22.54)

or in matrix notation

d (ny (0 —%* 7
o (8)=(270) (1) 0259

The eigenvalues are purely imaginary

= di/myrp = tiw (22.56)

and the corresponding eigenvectors are
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Fig. 22.8 (Lotka Volterra model) The predator and prey population densities show periodic oscil-
lations (Right). In the H-P plane the system moves on a closed curve, which becomes an ellipse for
small deviations from equilibrium (Left)

i /myr, amp/b 22.57)
bryja )’ \iymyrp )" ’
The solution of the linearized equations is then given by

b |
E(t) = &y coswt + i 770 sin wt
n(t) = nocoswt — —,/ &) sinwt (22.58)

which describes an ellipse in the £ — 7 plane (Fig.22.8). The nonlinear equations
(22.48) have a first integral

ru InP(t) —aP({t)—bH() +mp InH()=C (22.59)

and therefore the motion in the H — P plane is on a closed curve around the equi-
librium which approaches an ellipse for small amplitudes &, 7.

22.4 Functional Response

Holling [273, 274] studied predation of small mammals on pine sawflies. He sug-
gested a very popular model of functional response. Holling assumed that the preda-
tor spends its time on two kinds of activities, searching for prey and prey handling
(chasing, killing, eating, digesting). The total time equals the sum of time spent on
searching and time spent on handling

T = Tsearen + Thandling~ (22.60)
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Fig. 22.9 Functional aHT
response of Holling’s model

T/Tyy fmmommmmm oo
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Capturing prey is assumed to be a random process. A predator examines an area
« per time and captures all prey found there. After spending the time T4, the
predator examined an area of a7y, and captured Hy = HaTseqrcn prey. Hence
the predation rate is

HT Tsearch 1
a=——==« =

= = =« . (22.61)
HT T 1+ Thandling/Tsearch

The handling time is assumed to be proportional to the number of prey captured
Thundling = ThHaTsearch (2262)

where T}, is the handling time spent per one prey. The predation rate then is given by

(07

a=———:. (22.63)
14+ aHT,

At small densities handling time is unimportant and the predation rate is ay = «
whereas at high prey density handling limits the number of prey captured and the
predation rate approaches a, = HLTh (Fig.22.9).

22.4.1 Holling-Tanner Model

We combine the logistic model with Holling’s model for the predation rate [273-275]

ﬁ — HIl1 i HP = HIl1 i LHP = f(H, P)
- ky) T TH Kp) Trang, P =0
(22.64)
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and assume that the carrying capacity of the predator is proportional to the density
of prey

& _ (1Y (1-L = g(H, P) (22.65)
=7rp KP =7rp kH =g , . .

Obviously there is a trivial equilibrium with P,, = H,, = 0. Linearization gives

dH H+ dp P+ (22.66)
—_— =7 o —_— =7 L] .
a a "

which shows that this equilibrium is unstable. There is another trivial equilibrium
with P,y =0, H,; = Kp. After linearization

P=¢+... H=Ky+n+... (22.67)
we find
dn Ky+n «
— =ry(Kyg +n — — Ky +né+...
5 7 (Ku +n)( Ky ) 1+a(KH+n)Th( g+ mE

& Kut+ (22.68)
= —r _— .

A akuTy

dg
— = . 22.69
ar rpé ( )

The eigenvalues of the linearized equations

1 _ ("7 —Trekan Ku ) (0
(=05 =) () @210
are

1
A= M err” £ 5V = el = ru.re. (22.71)

Let us now look for nontrivial equilibria. The nullclines (Fig.22.10) are the curves
defined by % = 0and % = 0, hence by

Iy H
p_"t ( - K_) (I + aHT}) (22.72)

Q H

P =kH. (22.73)
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Fig. 22.10 Nullclines of the P
predator prey model 4 .
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The H-nullcline is a parabola at

_oli—Ky' o, _ @G+ Ky

m = 1 m = - > 0. (22.74)
20T, K4, 4aThK 5

It intersects the H-axis at H = Ky and H = —1/aT), and the P-axis at P = ry /.
There is one intersection of the two nullclines at positive values of H and P which

corresponds to a nontrivial equilibrium. The equilibrium density H,, is the positive
root of

ruaTyHy, + (rp + akKy — ryKyaTy) Heg — ry Ky = 0. (22.75)

It is explicitly given by
g +OékKH —rHKHaTh
2ryaTy,
\/(VH ~|— OékKH — VHKHOéTh)Z —|— 4rHaThrHKH
+ .
2ryaTy,

H,, =

(22.76)

The prey density then follows from

P.y = Hogk. (22.77)

The matrix of derivatives has the elements
of aH,,

TP = 9P T T 1+ alyH,,

of H,, akH,, o’ Hy kT,
Mgy = —— = TH 1-2 — +

OH Ky 1+ aT,H,y (1+ ozThH(_,q)2
dg B
oP

mpp = =—rp
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Mpy = — = rpk (2278)

from which the eigenvalues are calculated as

myp +mpp " (mpp +mpp)?

=
2 4

— (mggmpp —mgpmpg).  (22.79)

Oscillations appear, if the squareroot is imaginary (Fig.22.11).

22.5 Reaction-Diffusion Systems

So far we considered spatially homogeneous systems where the density of a popula-
tion, or the concentration of a chemical agent, depend only on time. If we add spatial
inhomogeneity and diffusive motion, new and interesting phenomena like pattern
formation or traveling excitations can be observed.

22.5.1 General Properties of Reaction-Diffusion Systems

Reaction-diffusion systems are described by a diffusion equation® where the source
term depends non-linearly on the concentrations

5 & D, 1 Fi({c})
=1 : |= Al |+ :

: (22.80)
ot :
cn Dy cn Fy({c})

22.5.2 Chemical Reactions

Consider a number of chemical reactions which are described by stoichiometric
equations

ZViAi =0. (22.81)

3We consider only the case, that different species diffuse independently and that the diffusion
constants do not depend on direction.
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Fig. 22.11 (Holling-Tanner model) Top evolution from an unstable equilibrium to a limit cycle.
Middle a stable equilibrium is approached with oscillations. Botfom stable equilibrium without
oscillations




22.5 Reaction-Diffusion Systems 511
The concentration of agent A; is
ci =cio+vix (22.82)

with the reaction variable

Ci —Cio

X = (22.83)
Vi
and the reaction rate
dx 1 d¢;
= — = ——" (22.84)
dt v; dt

which, in general is a nonlinear function of all concentrations. The total concentration
change due to diffusion and reactions is given by

d
5,0 =D A+ ;ukjrj =Dy Aci + Fi({ci)). (22.85)

22.5.3 Diffusive Population Dynamics

Combination of population dynamics (22.2) and diffusive motion gives a similar set
of coupled equations for the population densities

0
ENk = Dy A Ny + fir(Ny, Ny, --- Np). (22.86)

22.5.4 Stability Analysis

Since a solution of the nonlinear equations is not generally possible we discuss small
deviations from an equilibrium solution N;?* with

0
— N, = AN, = 0. (22.87)
ot

Obviously the equilibrium obeys

fi(Ni---N)=0 k=1,2---n. (22.88)

4We assume tacitly that such a solution exists.
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We linearize the equations by setting

Ny =N+ & (22.89)
and expand around the equilibrium

on on ... 9h

& D, A&, o o T o, &
o1& A3 N IV T IN. &
== . A S ISR N I R
£ Dy A ot ot o, ¢
n n D_Nl 8_1\/2 .. Z?_M n
(22.90)
Plane waves are solutions of the linearized problem.’ Using the ansatz
£ = &joe Y (22.91)
we obtain
& & &
& , | & &
iw|l . |=—kD| . | +My| . (22.92)
g'l Sﬂ fn

where M denotes the matrix of derivatives and D the matrix of diffusion constants.
For a stable plane wave solution A = iw is an eigenvalue of

My = My —k*D (22.93)
with
R\ < 0. (22.94)

If there are purely imaginary eigenvalues for some k they correspond to stable solu-
tions which are spatially inhomogeneous and lead to formation of certain patterns.
Interestingly, diffusion can lead to instabilities even for a system which is stable in
the absence of diffusion [276].

3Strictly this is true only for an infinite or periodic system.
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22.5.5 Lotka Volterra Model with Diffusion

As a simple example we consider again the Lotka Volterra model. Adding diffusive
terms we obtain the equations

9 H _ ruH —aHP Dy H
E(P)_(bHP—mPP)—i_( DP)A(P)' (22.95)

There are two equilibria

Hy =Py =0 (22.96)
and
ry mp
Py =" Hy=- (22.97)

The Jacobian matrix is

0 ru —aPy —aH,
My = 5= F(Co) = ( bp by s (22.98)
which gives for the trivial equilibrium
[ TH — DHk2 0
M, = ( o b, kz) . (22.99)
One eigenvalue \| = —m p — D pk? is negative whereas the second A\, = ry — Dy k>

is positive for k> < ry /Dy . Hence this equilibrium is unstable against fluctuations
with long wavelengths. For the second equilibrium we find:

—Dyk?* —ae
M = ( bry —D,ﬁkz) (22.100)

a

tr (My) = —(Dy + Dp)k?

det(Mg) =mpry + DHDpk4

_DH—i—Dp
2

1
A= K>+ z\/(DH — Dp)2k* —dmpry. (22.101)
For small k with k* < 2./mpry/|Dy — Dp| damped oscillations are expected

whereas the system is stable against fluctuations with larger k (Figs.22.12, 22.13
and 22.14).
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Fig.22.12 (Lotka—Volterra model with diffusion) The time evolution is calculated for initial random
fluctuations. Colors indicate the deviation of the predator concentration P (x, y, t) from its average
value (blue: AP < —0.1, green: —0.1 < AP < —0.01, black: —0.01 < AP < 0.01, yellow:
0.01 < AP < 0.1, red: AP > 0.1). Parameters as in Fig.22.13

Fig. 22.13 (Dispersion of 1
the diffusive Lotka—Volterra
model) Real (full curve) and
imaginary part (broken line) 0 1
of the eigenvalue A (22.101)
are shown as a function of k.

Parameters are -1 7]
Dy =Dp =1, L
mp=ryg=a=5b=0.5
P H 2k i
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Problems

Problem 22.1: Orbits of the Iterated Logistic Map
This computer example draws orbits (Fig. 22.5) of the logistic map

Xpt1 = 1o - Xy - (1 — xp). (22.102)

You can select the initial value x and the variable r.
Problem 22.2: Bifurcation Diagram of the Logistic Map

This computer example generates a bifurcation diagram of the logistic map (Fig. 22.6).
You can select the range of .

Problem 22.3: Lotka—Volterra Model

Equation (22.47) are solved with the improved Euler method (Fig.22.8). The pre-
dictor step uses an explicit Euler step to calculate the values at t + Az/2
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P(x,y.1) H(x,y,1)

Fig. 22.14 (Traveling waves in the diffusive Lotka—Volterra model) Initially P(x, y) = P, and
H (x, y) is peaked in the center. This leads to oscillations and a sharp wavefront moving away from
the excitation. Color code and parameters as in Fig.22.12

H, (t + %) = H(t)+ (ry H(t) —aH(1)P(1)) % (22.103)
At At
Ppr(t + 5-) = P(0) + (bH@)P (1) —m,P(1)) > (22.104)

and the corrector step advances time by At

At At At
H({t+ At)=H(t) + (rHHP,(t + 7) —aHp, (t + T)P’”(t + 7)) At

(22.105)
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At At At
P(t+ At) = P(t) + (pr,(l + 7)Ppr(l + 7) —mpyP, (t + 7)) At.
(22.106)

Problem 22.4: Holling-Tanner Model

The equations of the Holling-Tanner model (22.64), (22.65) are solved with the
improved Euler method (see Fig.22.11). The predictor step uses an explicit Euler
step to calculate the values at 1 + Az /2:

At At
H, (t + 7) =H@®)+ f(HQ), P(t))7 (22.107)

At At
Py (t + 7) = P()+g(H(t), P(t))7 (22.108)

and the corrector step advances time by At:
H(t+ At = H@) + f(Hy(t 4+ 2 ) Pyt + 2 ))Ar (22.109)

P(t+ At) = P(t) + g(Hpr (¢ + ) Pyt + ))At (22.110)
Problem 22.5: Diffusive Lotka—Volterra Model

The Lotka—Volterra model with diffusion (22.95) is solved in 2 dimensions with
an implicit method (21.2.2) for the diffusive motion (Figs.22.12 and 22.14). The
split operator approximation (21.3) is used to treat diffusion in x and y direction
independently. The equations

Hit+ A\ _ (A 'H@) ATV F(H@), P(1)At
Pi+an ) =\ateay ) T\ atgEm o), Py A

~ lA Y[H@) + f(H(t), P(t))At]
( lA L[P(t)+ g(H®), P(t))A;]) (22.111)

are equivalent to the following systems of linear equations with tridiagonal
matrix (5.3):

AU = H(t) + f(H(t), P(1))At (22.112)
U= AH(+ Ab) (22.113)
AV = P(1) 4+ g(H(1), P(1))At (22.114)
V =AP(t+ Al). (22.115)

Periodic boundary conditions are implemented with the method described in Sect. 5.4.




Chapter 23
Simple Quantum Systems

In this chapter we study simple quantum systems. A particle in a one-dimensional
potential V (x) is described by a wave packet which is a solution of the partial
differential equation [277]

2 2

" 2m 0x?

ihgib(ﬂ = Hy(x) = P(x) + V() (x). (23.1)

We discuss two approaches to discretize the second derivative. Finite differences
are simple to use but their dispersion deviates largely from the exact relation, except
high order differences are used. Pseudo-spectral methods evaluate the kinetic energy
part in Fourier space and are much more accurate. The time evolution operator can
be approximated by rational expressions like Cauchy’s form which corresponds to
the Crank-Nicholson method. These schemes are unitary but involve time consuming
matrix inversions. Multistep differencing schemes have comparable accuracy but are
explicit methods. Best known is second order differencing. Split operator methods
approximate the time evolution operator by a product. In combination with finite
differences for the kinetic energy this leads to the method of real-space product
formula which can be applied to wavefunctions with more than one component, for
instance to study transitions between states. In a computer experiment we simulate
a one-dimensional wave packet in a potential with one or two minima.

Few-state systems are described with a small set of basis states. Especially the
quantum mechanical two-level system is often used as a simple model for the tran-
sition between an initial and a final state due to an external perturbation.' Its wave-
function has two components

— CI
[ >= (Cz) (23.2)

which satisfy two coupled ordinary differential equations for the amplitudes Ci ; of
the two states

! For instance collisions or the electromagnetic radiation field.
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ihi(cl) =(H“ Hu)(cl). (23.3)
dr \ 2 Hy Hy ) \ C2

In several computer experiments we study a two-state system in an oscillating
field, a three-state system as a model for superexchange, the semiclassical model and
the Landau—Zener model for curve-crossing and the ladder model for exponential
decay. The density matrix formalism is used to describe a dissipative two-state system
in analogy to the Bloch equations for nuclear magnetic resonance. In computer
experiments we study the resonance line and the effects of saturation and power
broadening. Finally we simulate the generation of a coherent superposition state or

a spin flip by applying pulses of suitable duration. This is also discussed in connection
with the manipulation of a Qubit represented by a single spin.

23.1 Pure and Mixed Quantum States

Whereas pure states of a quantum system are described by a wavefunction, mixed
states are described by a density matrix. Mixed states appear if the exact quantum
state is unknown, for instance for a statistical ensemble of quantum states, a system
with uncertain preparation history, or if the system is entangled with another system.
A mixed state is different from a superposition state. For instance, the superposition

[V >= Coltho > +C1lth1 > (23.4)

of the two states |ty > and |¢); > is a pure state, which can be described by the
density operator

[t >< ] = |Col*|tho >< thol + [C1*|1hy >< 1]
+ CoCT Yo >< 1| + CyCilhr > < 9o (23.5)

whereas the density operator

P = polto >< Yol + p1lY1 >< 1] (23.6)

describes the mixed state of a system which is in the pure state |1)y > with probability
po and in the state |¢); > with probability p; = 1 — py. The expectation value of an
operator A is in the first case

< A >=<|Alp >= |Col* < YolAlho > +|C1I* < 1Al >
+ CoCy < 1| Alhy > +CiCy < hol Al > (23.7)

and in the second case

<A >=po < olAlYo > +p1 < VilAlr > . (23.8)
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Both can be written in the form

< A >=tr(pA). (23.9)

23.1.1 Wavefunctions

The time evolution of a quantum system is governed by the time dependent
Schroedinger equation [278]

ih%w} >=H > (23.10)

for the wavefunction 1. The brackets indicate that [¢) > is a vector in an abstract
Hilbert space [47]. Vectors can be added

[ >= (Y1 > +[p2 >= Y1 + 92 > (23.11)
and can be multiplied with a complex number

[ >= A1 >= [y > . (23.12)
Finally a complex valued scalar product of two vectors is defined”

C =<l > (23.13)

which has the properties

< il >=<olth >" (23.14)
< PiMhy >= A < Y1y >=< X"i[hr > (23.15)
<YW+ >=< Pl > + <Pl > (23.16)
<Y1+ YlY >=<hilp >+ <alYp > (23.17)

21f, for instance the wavefunction depends on the coordinates of N particles, the scalar product is
defined by < Y|t >= j d3rl o 'd3rN¢:(rl PN (TN
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23.1.2 Density Matrix for an Ensemble of Systems

Consider a thermal ensemble of systems. Their wave functions are expanded with
respect to basis functions |1y > as

[ >= ZGI% > . (23.18)
The ensemble average of an operator A is given by

<A>=<YPAY>=< ZC;"wSACS/z/)S/ > (23.19)

= > CiCyAy =1r (pA) (23.20)

5,8’

with the density matrix

Ps's = Z C:Cs’- (23.21)

The wave function of an N-state system is a linear combination
¥ >=CilYy > +Col > +--- CylYoy > . (23.22)

The diagonal elements of the density matrix are the occupation probabilities

pn=I1CiI>  pn=ICl*---  pyv=ICy|? (23.23)
and the non diagonal elements measure the correlation of two states’

p12 = py =C3Cy,--- . (23.24)

23.1.3 Time Evolution of the Density Matrix

The expansion coefficients of

[ >=>" Cilyy, > (23.25)

can be obtained from the scalar product

Cy =< wv“/} > . (2326)

3They are often called the “coherence” of the two states.
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Hence we have

CiCy =< Yty >< ol >=< Yyl >< Ylthy > (23.27)

which can be considered to be the s, s matrix element of the projection operator

1Y >< 9|

CiCy = (I >< )y, - (23.28)
The thermal average of [¢) > < 1| is the statistical operator

p=1><l (23.29)

which is represented by the density matrix with respect to the basis functions |, >

Pys = | >< Ply, = C¥Cy. (23.30)

From the Schroedinger equation

ihlY) >= H[Y > (23.31)
we find

—ih < | =< HY| =< ¢Y|H (23.32)
and hence

ihp = ih(w >< |+ ¢ >< zm) =H} >< |- >< HYl.  (23.33)

Since the Hamiltonian H is identical for all members of the ensemble we end up
with the Liouville-von Neumann equation

ihp=Hp— pH = [H, pl. (23.34)

With respect to a finite basis this becomes explicitly:

ihpii = Z Hijpji — pijHji = Z Hijpji — pijHji (23.35)
J i

ihpi = ZHijpjk — pijHjyi
J

= (H;; — Hi)pix + Hix(prk — pii) + z (Hijpjr — pijHjr)- (23.36)
Hik
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23.2 Wave Packet Motion in One Dimension

A quantum mechanical particle with mass m,, in a one-dimensional potential V (x)
(Fig.23.1) is described by a complex valued wavefunction 1 (x). We assume that the
wavefunction is negligible outside an interval [a, b]. This is the case for a particle
bound in a potential well i.e. a deep enough minimum of the potential or for a
wave-packet with finite width far from the boundaries. Then the calculation can be
restricted to the finite interval [a, b] by applying the boundary condition

P(x)=0 forx <aorx>b (23.37)
or, if reflections at the boundary should be suppressed, transparent boundary condi-
tions [279].

All observables (quantities which can be measured) of the particle are expectation
values with respect to the wavefunction, for instance its average position is

b
< x >=< YPx)xP(x) >=/ dx *(x) x (x). (23.38)
The probability of finding the particle at the position xy is given by
P(x = x0) = [ (x0)|*. (23.39)
For time independent potential V (x) the Schroedinger equation

0%
2m, ox?

i) = Hyp = (— + V(x)) ¥ (23.40)

can be formally solved by

Fig. 23.1 Potential well 1 i
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i(t — o)
h

() = U, 10)1(to) = exp [— H] V(1) (23.41)

If the potential is time dependent, the more general formal solution is

() = Ut 10)(ty) = T, exp [—% / H(r)dr} P(to)

=Z%(%) /dn/ dtz.../ dt, T {H@t)H () ... H(t,)}  (23.42)
n=0 " fo fo fo

where 7} denotes the time ordering operator. The simplest approach for discretization
is to divide the time interval 0. .. ¢ into a sequence of smaller steps

U, o)) =U(t, tn=1) ... U(ta, 1)U (11, 1o) (23.43)

and to neglect the variation of the Hamiltonian during the small interval At = 1,1 —1,
[280]

1At
U(tn-'rl V) = exXp [_?H(l‘n)] . (23.44)

23.2.1 Discretization of the Kinetic Energy

The kinetic energy

2 2

h= 0
Ty(x) = —m@d)(x) (23.45)

is a nonlocal operator in real space. It is most efficiently evaluated in Fourier space
where it becomes diagonal

h*k?
FITyI k) = — = F [¢] (k). (23.40)

mp

23.2.1.1 Pseudo-Spectral Methods

The potential energy is diagonal in real space. Therefore, pseudo-spectral
(Sect. 12.5.1) methods [281] use a Fast Fourier Transform algorithm (Sect.7.3.2)
to switch between real space and Fourier space. They calculate the action of the
Hamiltonian on the wavefunction according to
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h*k?
Hy(x) = V(@0)(x) + F! [—2m Flyl (k)} : (23.47)
p

23.2.1.2 Finite Difference Methods

In real space, the kinetic energy operator can be approximated by finite differences
on a grid, like the simple 3-point expression (3.31)

P Y — 20,
2m,), Ax?

+ 0(Ax?) (23.48)

or higher order expressions (3.33)

h2 _wn+2 + 161/1"_,'_1 _ 30wn + 16’1[)”_1 _ wn L .
— 2 “ = = B oA 23.49
2m, 12412 oA (2349)
o1 I, 3 . 3, 49
~ am, Ax (% mt3 = 2 ¥mi2 T 5Vt = g ¥m
n 3 3 + ! P + 0(Ax®) (23.50)
2 m—1 20 m—2 90 m—3 X °

etc. [282]. However, finite differences inherently lead to deviations of the dispersion
relation from (23.46). Inserting v,, = e*"4* we find

B2 2(1 — cos(kAx))

E(k) = 23.51
®) = 3= (23.51)
for the 3-point expression (23.48),

B* 15— 16cos(kA 2kA
E(k) = cos(kAx) + cos( X) (23.52)

2m,), 6Ax?

for the 5-point expression (23.49) and

L (% 5 costhan) + = cos@hAx) — - cosGkax) (23.53)
—— —— | — —3cos(kAx) + — cos X) — — cos X .
2m, Ax? \ 18 10 45

for the 7-point expression (23.50). Even the 7-point expression shows large deviations
for k-values approaching ky.x = 7/Ax (Fig.23.2). However, it has been shown that
not very high orders are necessary to achieve the numerical accuracy of the pseudo-
spectral Fourier method [283] and that finite difference methods may be even more
efficient in certain applications [284].
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Fig. 23.2 (Dispersion of 10 i

finite difference expressions) ,/
The dispersion relation of I // ]
finite difference expressions 8- A

of increasing order (23.48,
23.49, 23.50 and the
symmetric 9-point
approximation [282]) are
compared to the exact
dispersion (23.46) of a free
particle (dashed curve)

23.2.2 Time Evolution

A number of methods have been proposed [280, 285-287] to approximate the short
time propagator (23.44). Unitarity is a desirable property since it guaranties stability
and norm conservation even for large time steps. However, depending on the applica-
tion, small deviations from unitarity may be acceptable in return for higher efficiency.
The Crank—Nicolson (CN) method [288-290] is one of the first methods which have
been applied to the time dependent Schroedinger equation. It is a unitary but implicit
method and needs the inversion of a matrix which can become cumbersome in two
or more dimensions or if high precision is required. Multistep methods [291, 292],
especially second order [293] differencing (SOD) are explicit but only conditionally
stable and put limits to the time interval A¢. Split operator methods (SPO) approxi-
mate the propagator by a unitary product of operators [294-296]. They are explicit
and easy to implement. The real-space split-operator method has been applied to
more complex problems like a molecule in a laser field [297]. Polynomial approx-
imations, especially the Chebishev expansion [298, 299], have very high accuracy
and allow for large time steps, if the Hamiltonian is time independent. However,
they do not provide intermediate results and need many applications of the Hamil-
tonian. The short time iterative Lanczos (SIL) method [118, 300, 301] is very useful
also for time dependent Hamiltonians. Even more sophisticated methods using finite
elements and the discrete variable representation are presented for instance in [302,
303]. In the following we discuss three methods (CN,SOD,SPO) which are easy to
implement and well suited to solve the time dependent Schroedinger equation for a
mass point moving in a one-dimensional potential.
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23.2.2.1 Rational Approximation
Taking the first terms of the Taylor expansion

1At 1At
U(tn+1,tn)=exp[—?H]=1—?H+--~ (23.54)

corresponds to a simple explicit Euler step

iA
Y(tay1) = (1 - l—htH) Y(ty). (23.55)

From the real eigenvalues E of the Hamiltonian we find the eigenvalues of the explicit
method

A=1-—E (23.56)

which all have absolute values

At2E?
N =1+ =7 > 1. (23.57)

Hence the explicit method is not stable.
Expansion of the inverse time evolution operator

- 1At 1At
U(ty, thr1) = Ultys1, 1) =exp +?H =1+ FH‘F"'

leads to the implicit method
1At
Y(tay1) = P(t) — W H(t,41) (23.58)
which can be rearranged as
iar \7!
Yltar) =\ 1+ —H) (). (23.59)

Now all eigenvalues have absolute values < 1. This method is stable but the norm
of the wave function is not conserved. Combination of implicit and explicit method
gives a method [289, 290] similar to the Crank—Nicolson method for the diffusion
equation (Sect.21.2.3)

w(t"Jrl) - w(tn) =——H +

23.60
h 2 2 ( )

iAt (¢(tn+1) 1p(l‘n))
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This equation can be solved for the new value of the wavefunction

—(1+i%y _1(1 'ﬁH) ) (23.61)
1p(l‘nJrl)—( +12h ) _12h w(n .

which corresponds to a rational approximation* of the time evolution operator
(Cayley’s form)

- At
— IEH

Utpyr, 1) = @-

(23.62)

The eigenvalues of (23.62) all have an absolute value of

2At2
EAt\ ™! EAt e
(1+i ) (1—' )‘: . (23.63)

i
2h 2h /1 + EjhAJZ

It is obviously a unitary operator and conserves the norm of the wavefunction since

i
1—idtH 1—idt T+HiSEH\ (1 —i5H
-k 2h ) = i 2 ) =1 (23.64)
1+igfH 1+igfH 1—isfH 1+igfH
as H is Hermitian H™ = H and (H—izA—;;H )and (1 —izA—f’LH ) are commuting operators.
From the Taylor series we find the error order

1+,AtH -1 LAy LAy At2H2+ LA

- _1— — — 11— R — —1—

'2h '2n 2T a2 2h
iAt Ar?

=1—7H—ﬁH2+-.-=exp(—%H)+O(At3). (23.65)

IAl =

For practical application we rewrite [304]

At \ 7! At At \ 7!
:(1+i—H) (—1—i—H+2)=—1+2(1+i2—hH) (23.66)

hence

A -1
Ytyy1) =2 (1 + iZ—;LH) Y(tn) — P(tn) = 2x — Y(tn). (23.67)

4The Pade approximation (Sect.2.4.1) of order [1, 1].
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1 (t,+1) is obtained in two steps. First we have to solve

(1 'ﬂH) = (s 23.68
+12h X = P(tn). (23.68)

Then 1 (#,41) is given by

Pltar1) = 2X = P(tn). (23.69)
We use the finite difference method (Sect. 12.2) on the grid

Xm=mAx m=0---M ), =Pty xn) (23.70)

and approximate the second derivative by

i fo + 001 = 200
WV, Xm) =
Ox? s ) Ax?

+ 0(Ax?). (23.71)

Equation (23.68) then becomes a system of linear equations

REAmkl

L= (23.72)
Lol Ll
with a tridiagonal matrix
() ("
A=1oj AL Ll2 +1At{ . \ (23.73)
=l-i—- — . .
dmoat ] 2hk }
\ -12 Vu
The second step (23.69) becomes
n+1 n
0 . X0 Yo
i X1 (e
=2 — . (23.74)

Lir] Lol La]

Inserting a plane wave

P = elkr—en (23.75)
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0.8

0.6

WAt/

0.4

0.2

KAX/T

Fig. 23.3 (Dispersion of the Crank—Nicolson method) The dispersion relation of the Crank—
Nicolson method (23.95) deviates largely from the exact dispersion (23.98), even for small val-
ues of the stability parameter «. The scaled frequency wA?/« is shown as a function of kAx /7
for « = 0.1, 1, 2,5, 10 (solid curves) and compared with the exact relation of a free particle
wAt/a = (kAx/7T)2 (dashed curve)

we obtain the dispersion relation (Fig.23.3)

2 hof2 . kAx\’
—tan(wAt/2) = — { — sin —— (23.76)
At 2m, \ Ax 2
which we rewrite as
20 ,kAx T
wAt = 2arctan — sin® — = (23.77)
™ T 2
with the dimensionless parameter
. T hAL (23.78)
© 2m,Ax? '

For time independent potentials the accuracy of this method can be improved
systematically [305] by using higher order finite differences for the spatial derivative
(Sect.23.2.1) and a higher order Pade approximation (Sect.2.4.1) of order [M, M]
for the exponential function

1— (M)
— H i o (23.79)
1+ 2/28

s=1

to approximate the time evolution operator
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iAt M1 — (At H /By /z™ M1
2 S__ 1 0((A . 23.80
exp( h ) H1+<iAzH/h>/z:f(M> (an= 2350

s=1

However, the matrix inversion can become very time consuming in two or more
dimensions.

23.2.2.2 Second Order Differencing

Explicit methods avoid the matrix inversion. The method of second order differencing
[293] takes the difference of forward and backward step

Y(tn-1) = Uty_1, t)(tn) (23.81)

w(tn-}—l) = U(tn-H s tn)w(tn) (23.82)

to obtain the explicit two-step algorithm

Vtnr1) = Y(ta—1) + [Uurrs 1) = Ut tam1) 0 (1) (23.83)
The first terms of the Taylor series give the approximation

Yltar1) = V(ty_1) — 21%%(%) +0((An) (23.84)

which can also be obtained from the second order approximation of the time derivative
[306]

Pt + At) — Y(t — At)

23.85
2At ( )

;.
Hip = ihg ) =

This two-step algorithm can be formulated as a discrete mapping

Vi)Y _ (2L H 1Y ()
( w(tB )_( [ 0) (w(,nl)) (23.86)

with eigenvalues

iE, At E2AP
A= 1 2 (23.87)

For sufficiently small time step [280]

h
At < — (23.88)
max | Eg|
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the square root is real,

E2Ar? E2Ar?
N> = Shz +(1— S;—Lz ):1 (23.89)

and the method is conditionally stable and has the same error order as the Crank—
Nicolson method (Sect.23.2.2). Its big advantage is that it is an explicit method and
does not involve matrix inversions. Generalization to higher order multistep differ-
encing schemes is straightforward [291]. The method conserves [306] the quantities
N < Y@+ AD)|Y(t) > and RN < Y(t + Ar)|H|Y(t) > but is not strictly unitary
[293]. Consider a pair of wavefunctions at times #y and #; which obey the exact time
evolution

1At
Y(t1) = exp [—7H ] ¥(10) (23.90)
and apply (23.84) to obtain
() = [1 - ZM%H exp I—M%HH ¥(to) (23.91)

which can be written as

U(ta) = L(to) (23.92)

where the time evolution operator L obeys

. 1At 1At 1At 1At
L'L = |:1 + ZFH exp <+?H” [1 —2—Hexp [——HH

h h
I E O TR
= 5 sSin 5 5 .

Expanding the sine function we find the deviation from unitarity [293]

4
Lre—1= % (%H) +.-=0(AD% (23.93)
which is of higher order than the error of the algorithm. Furthermore errors do not
accumulate due to the stability of the algorithm (23.89). This also holds for deviations
of the starting values from the condition (23.90).

The algorithm (23.84) can be combined with the finite differences method
(Sect.23.2.1)
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WALt /o
T

0 ‘ ! ‘ ! ‘ ! ‘
0 0.2 0.4 0.6 0.8 1

KAk

Fig. 23.4 (Dispersion of the Fourier method) The dispersion relation of the SOD-Fourier method
(23.95) deviates from the exact dispersion (23.98) only for very high k-values and approaches it for
small values of the stability parameter «. The scaled frequency wAt?/« is shown as a function of
kAx/m for o = 0.5,0.75, 1 (solid curves) and compared with the exact relation of a free particle
wAt/a = (kA)c/7r)2 (dashed curve)

: 2
n+1 n—1 1At n
m m h |: mq/)m 2mpr2

(Wl + 00, — zw::,)} (23.94)

or with the pseudo-spectral Fourier method [306]. This combination needs two
Fourier transformations for each step but it avoids the distortion of the dispersion
relation inherent to the finite difference method. Inserting the plane wave (23.75)
into (23.84) we find the dispersion relation (Fig.23.4) for a free particle (V = 0):

1 . (hAtk? 1 . kAx\?
w = —arcsin = — arcsinf a | — . (23.95)
At 2m At T

For a maximum k-value

™

kmax = T (23.96)

the stability condition (23.88) becomes
At B2k
1> ——5% —q. (23.97)
h 2m,
For small k the dispersion approximates the exact behavior
hk?
W= (23.98)

- 2mp'
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WALt /o

kAx /It

Fig. 23.5 (Dispersion of the finite difference method) The dispersion relation of the SOD-FD
method (23.99) deviates largely from the exact dispersion (23.98), even for small values of the
stability parameter . The scaled frequency wAt/« is shown as a function of kAx /7 for a =
72 /4~ 2.467, 1.85, 1.23, 0.2 (solid curves) and compared with the exact relation of a free particle
wAt/a = (kAx/7r)2 (dashed curve)

The finite difference method (23.94), on the other hand, has the dispersion relation
(Fig.23.5)

1 4 kA
w = — arcsin [ — sin? [ ~2X (23.99)
At 2 2

and the stability limit

| = At _ 2nAr 4a (23.100)
R m,Axr g '
The deviation from (23.98) is significant for k Ax /7 > 0.2 even for small values of
a [306].

23.2.2.3 Split-Operator Methods

The split-operator method approximates the exponential short time evolution oper-
ator as a product of exponential operators which are easier tractable. Starting from
the Zassenhaus formula [307]

NATE) _ PAAB NG NC (23.101)
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1 1
C, = E[B’A] C; = E[CQ,A+2B] (23.102)
approximants of increasing order can be systematically constructed [295, 308]
e)\(A+B) — e)\AeAB + 0()\2) — e)\Ae)\Be)\ZCZ + 0()\3) cen (23]03)

Since these approximants do not conserve time reversibility, often the symmetric
expressions

AAHB) — MRABAAR L0 (3\3) = M/2AB[2 N C /4 NB/2 MA2 | 00

(23.104)
are preferred.
Split-Operator-Fourier Method
Dividing the Hamiltonian into its kinetic and potential parts
2 92
H:T—i—V:—ZmP@—i-V(x) (23.105)

the time evolution operator can be approximated by the time-symmetric expression
UAt) =e 577 Ve T 4 0((Ar)°) (23.106)

where the exponential of the kinetic energy operator can be easily applied in Fourier
space [306, 309]. Combining several steps (23.1006) to integrate over a longer time
interval, consecutive operators can be combined to simplify the algorithm

iAt iAr iAt N-1 iAt iAr
UNAD = UN (A1) = e 5T (e—%Ve—%T) e Ve BT, (23.107)
Real-Space Product Formulae

Using the discretization (23.48) on a regular grid the time evolution operator
becomes the exponential of a matrix

Y, A B

[ h + mpAx? 2mp Ax? ]

R S s
2mp Ax? h mpAx? 2mp Ax?

U(At):exp{—iAtl . I }

__h _Vu h
l \ 2mpAx® h +mpr2}J
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Y +28 —p
, B m+28-0
= exp | —iAt? . (23.108)
—Byu +28
with the abbreviations
1 h
m = =V = — 23.109
K h b 2mp Ax? ( )

The matrix can be decomposed into the sum of two overlapping tridiagonal block
matrices [294, 297]°

Y+28 -8 Ay
-8 Im+8 A
H, = %"YZ"‘ﬁ_ﬂ = (23.110)
_ﬂ e Ap—1
0 0 0
1 Az
Osm+6 -0 _
. Ay
0 0
The block structure simplifies the calculation of e~ *4"#o and e~14'H tremendously

since effectively only the exponential functions of 2 x 2 matrices
B, () = e T4 (23.112)

have to be calculated and the approximation to the time evolution operator

U(At) = ¢ 1A1Ho/2g=iAtH, ,—iAtH,[2

Bi(4) 1 Bi(3)
_ By (4L By (At) Bi(4h) (23.113)

can be applied in real space without any Fourier transformation. To evaluate (23.112)
the real symmetric matrix A,, is diagonalized by an orthogonal transformation
(Sect. 10.2)

SFor simplicity only the case of even M is considered.
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A=rRVAR=r"(M O )& (23.114)
0 X

and the exponential calculated from

T i
e =1 _irR AR+ T RUARRVAR 4 - .-
-1 . (_iT)2 =
—R'|1—ird+ AR+ |R
1 _—ird oy fe™
—R e R =R ( g_mz)R. (23.115)

23.2.3 Example: Free Wave Packet Motion

We simulate the free motion (V = 0) of a Gaussian wave packet along the x-axis
(see Problem 23.1). To simplify the numerical calculation we seth =1 and m, =1
and solve the time dependent Schroedinger equation

i, 1 9
iz V=—355 (23.116)

for initial values given by a Gaussian wave packet with constant momentum

2\ )
wo(x)=(—) gilove=x"/a, (23.117)
aTm

The exact solution can be easily found. Fourier transformation of (23.117) gives

A 1 o . a4 a
t=0)=— dx ek =(— {——k—k 2}.
=0 = —= [ dxe e = (35) oo |-k
(23.118)
Time evolution in k-space is rather simple
0 » k* -

i—hy = — 23.119

15 (0 > (o ( )
hence

() = e F 2t = 0) (23.120)
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and Fourier back transformation gives the solution of the time dependent Schroedinger
equation in real space

Wt x) = \/% /_ Z dk & G (1)

2\ 1 x — %y 4 % 4oy
_ (_“) SRS PGkl i al G2l (23.121)
T Ja + 2it a + 2it

Finally, the probability density is given by a Gaussian

W, 0 =,/ a1 20y kot)? (23.122)
s X = — — X — .
T Ja? + 412 Pl a2 + 412 0
which moves with constant velocity kq and kinetic energy
*© n? 9? 1 1
dx ¢ (x, ) (- == H==-\k+-). 23.123
/_m w(x,)( zaxz)wx,) 2(0+a) (23.123)

Numerical examples are shown in Figs.23.6, 23.7 and Table 23.1.

23.3 Few-State Systems

In the following we discuss simple models which reduce the wavefunction to the
superposition of a few important states, for instance an initial and a final state which
are coupled by a resonant interaction. We approximate the solution of the time depen-
dent Schroedinger equation as a linear combination

Fig. 23.6 (Conservation of E o°F
norm and energy) The free ) = 7]
motion of a Gaussian wave % SE SOD (35.7) r
packet is simulated with the g 10
Crank—Nicolson method ‘§ 102F CN 4
(CN), the second order _qg SOP
differences method (SOD) o 10'16§ ; | ; | ; | ; |
with 3 point (23.48) 5 point %‘3 . i\__‘___________EQE_(?E,_Q_ _______ -
(23.49) and 7-point (23.50) 5 10 |y =
differences and with the kS 0t Sop E
real-space split-operator g
method (SPO). Ar = 1073, E 10 CN E
Ax =0.1,a=1,kg=3.77 _gg 6 ‘ ‘ ‘ ‘

1070 I 2 3 4 5
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20

Fig. 23.7 (Free wave-packet motion) The free motion of a Gaussian wave packet is simulated. The
probability density is shown for the initial Gaussian wave packet and at later times t = 1, 2, 3, 4.
Results from the second order differences method with 3 point differences (23.48, red dash-dotted)
and 5 point differences (23.49, blue dashed) are compared with the exact solution (23.122, thin

black solid line). At = 1073, Ax =0.1,a =1, kg = 3.77

Table23.1 (Accuracy of finite differences methods) The relative error of the kinetic energy (23.123)
is shown as calculated with different finite difference methods

Method Eiin %
kin
Crank—Nicolson (CN) with 3 point differences 7.48608 —1.6 x 1072
Second order differences with 3 point differences (SOD3) | 7.48646 —1.6 x 1072
Second order differences with 5 point differences (SODS) | 7.60296 —4.6 x 1074
Second order differences with 7 point differences (SOD7) | 7.60638 -0.9x 107
Split-operator method (SOP) with 3 point differences 7.48610 —1.6 x 1072
Exact 7.60645
M
(1) >~ Z Ci(Dlp; > (23.124)
j=1
of certain basis states [¢; > - - |¢y >° which are assumed to satisfy the necessary
boundary conditions and to be orthonormalized
< (bilqu >= 51']" (23125)

SThis basis is usually incomplete.
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Applying the method of weighted residuals (Sect. 12.4) we minimize the residual

IR >=ih Y Ci(t)lg; > — > Ci(t)H|p; > (23.126)
J J

by choosing the basis functions as weight functions (Sect. 12.4.4) and solving the
system of ordinary differential equations

0=R; =< ¢,;IR >=ihC; — > < ¢;|H|¢; > C; (23.127)

J

which can be written

M
ihC; = > H; ;C;(t) (23.128)
j=1
with the matrix elements of the Hamiltonian
Hij=<¢i|H|p; > . (23.129)

In matrix form (23.128) reads

Ci(1) Hyy - Him Ci(1)
ih : = P, : (23.130)
Cu(t) Hy 1 -+« Hym Cu(t)

or more symbolically
inC(1) = HC(1). (23.131)

If the Hamilton operator does not depend explicitly on time (H = const.) the formal
solution of (23.131) is given by

C=exp [%Hl C(0). (23.132)
l

From the solution of the eigenvalue problem
HC), = \C), (23.133)

(eigenvalues A and corresponding eigenvectors C,) we build the linear combination

C=> aCre'. (23.134)
A
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The amplitudes a, can be calculated from the set of linear equations

C(0) = > a,C,. (23.135)
A

In the following we use the 4th order Runge—Kutta method to solve (23.131) numer-
ically whereas the explicit solution (23.132) will be used to obtain approximate
analytical results for special limiting cases.

A time dependent Hamiltonian H () appears in semiclassical models which treat
some of the slow degrees of freedom as classical quantities, for instance an electron
in the Coulomb field of (slowly) moving nuclei

q;j4q;j
H® =Ta+ Z 47r50|r —R; (1) + Z  d7eo R (1) — R (1) (23.136)

or in a time dependent electromagnetic field

H@) =Ty + Vo — er E(1). (23.137)

23.3.1 Two-State System

The two-state system (Fig.23.8) (also known as two-level system or TLS) is the

simplest model of interacting states and is very often used in physics, for instance in

the context of quantum optics, quantum information, spintronics and quantum dots.
Its interaction matrix is

_(E1V
H= ( v Ez) (23.138)

and the equations of motion are

ihC, = E;C, + VG,

ihCy = E;Cy +VCy~ (23.139)

The interaction matrix can be diagonalized by an orthogonal transformation
(Sect. 10.2)

Fig. 23.8 Two-state system 2>
model

1>
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5 T Al
H=RHR = A (23.140)
2

with the rotation matrix

R= (Cf’s‘p - Sm‘”) . (23.141)
siny cos

The tangent of ¢ can be determined from (10.2)

¢ . E, - E, E, - E; 1+ E, — E\’
= tan @ = —sign _ ot
T v 8\ Ty 2V 2V
(23.142)
from which we find
! i T (23.143)
Cosp=—-—— singp=—— )
RV = AV
and the eigenvalues
N =FE -1V \=E,+7V. (23.144)

Finally the solution of (23.139) is given by (23.134)

(g‘ ) =A (i) em BTV | g (_17) e BTV (23.145)
2

For initial conditions
Ci(0)=1 C,0)=0 (23.146)
solution of (23.135) provides the coefficients

1 T
A=—+— B=——— 23.147
1+ 72 1+ 72 ( )

and hence the explicit solution

1 L (E—7rV)t 2 A (EyrV)t
C zeih + seih
1y [ 7 Lo 1+rL . (23.148)
C, r (e‘.h(E] W elh(Eﬁ—TV)t)

1+72
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The occupation probability of the initial state is

1474 272 t
C? = E,—E +27V)- ). 23.149

It oscillates with the frequency

h2 = \/4\/2 + (E, — Ey)? (23.150)

and reaches a minimum value

2
2 AE2(AE — JAE? 4v2)
e :(1—72) _ |AE] + _AF?
min 2 2 2 2°
I+7 (4V2+AE2—|AE|«/AE2+4V2) AET+4V
(23.151)

Of special interest is the fully resonant limit. E; = E;. Addition and subtraction of
equations (23.139) here gives

d
ih1-(Cr £ Co) = (E1 £ V)(C1 £ Cy) (23.152)

with the solution
Cy £ Cy = (C1(0) £ C2(0))e 1 EEVI/R (23.153)

For initial conditions given by (23.146) the explicit solution is

, Vit Vi 1+cosZd
Cy = e "B/ cos - |Cy)* = cos? - = Tﬁ (23.154)
. Vi Vi 1 —cos2
C, = —ie "E/gin - |C5|* = sin® - = Th (23.155)

At resonance the two-state system oscillates between the two states with the period

wh
v

T = (23.156)

Numerical results are shown in Fig.23.9.
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(c) AE=1
_—
0.8 08H
0.6 061 b
0.4 041\ A
02t 02 Vi
i 7” | i /
0 0
0 o o 2
(d) AE=3 V=l
1 T T T T
T T T
0.8 0.8}
0.6 0.6 .
041 0.4 .
02 O N N
oL ARV RV VARV ARV
0 0 0 2 4 6 8 10
time

Fig. 23.9 (Numerical simulation of a two-state system) The equations of motion of the two-state
system (23.139) are integrated with the 4th order Runge—Kutta method. For two resonant states the
occupation probability of the initial state shows oscillations with the period (23.156) proportional
to V~!. With increasing energy gap E» — E; the amplitude of the oscillations decreases

Fig. 23.10 Two-state 2>
system in an oscillating field o

U~

1>

23.3.2 Two-State System with Time Dependent Perturbation

Consider now a 2-state system with an oscillating perturbation (Fig.23.10) (for
instance an atom or molecule in a laser field)

H= (VE(;) be;)) V) = Vo coswt. (23.157)

The equations of motion are

ihCy = E\C, + V()C»

ihCy = V(1)Ci + E2Cy (23.158)
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After the substitutions

E
Cr=enru (23.159)
C2 = e%’uz

E,—E
Wy = % (23.160)

they become

Ly . Ey-E —ilwr — —i(wn 4
ihi =V@®)e ® 'uy = % (e iwn—wr 4 o ](“’2‘+“J)t) 17%)
E|—E
7

4 4 (23.161)
1hu2 = V(t)e i tul = % (elwﬂ*w)t —+ €1<w21+w)t) Uy

At larger times the system oscillates between the two states.” Applying the rotating
wave approximation for w &~ w,; we neglect the fast oscillating perturbation

Vi .
ihi, = 7%-1(“'21-“)’”2 (23.162)
Vo oo
ihiy, = 7"el<“’2'*vf>’u1 (23.163)
and substitute
U = ale—i(wzl—w)f (23.164)
to have
. Vi .
ih(d) — a1i(wy — w))e i@t — ?Oe_l(“’“_”)'ug (23.165)
3 Yo i(way —w)t o —iwar —w)t
ihi, = ?e 21 e Wi, (23.166)
or
. Vo
iha; = h(w — wy)a; + 71/!2 (23.167)
Vi
ihity = 7"5“ (23.168)

7So called Rabi oscillations.
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which shows that the system behaves approximately like a two-state system with
a constant interaction V/2 and an energy gap h(wy —w) = E; — E| — hw
(a comparison with a full numerical calculation is shown in Fig.23.11).

23.3.3 Superexchange Model

The concept of superexchange was originally formulated for magnetic interactions
[310] and later introduced to electron transfer theory [311]. It describes an indirect
interaction through high energy intermediates (Fig.23.12). In the simplest case, we

have to consider two isoenergetic states i and f which do not interact directly but
via coupling to an intermediate state v.

The interaction matrix is

V=05,10 Aw=5.0

0.05
0.04 -

0.03

0.02

T

T

N
J

o
=
=
=T
)

fen)
—
)
w
~
w
()}

time

Fig. 23.11 (Simulation of a two-state system in an oscillating field) The equations of motion
(23.158) are integrated with the 4th order Runge—Kutta method. At resonance the system oscillates

between the two states with the frequency V /. The dashed curves show the corresponding solution
of a two-state system with constant coupling (Sect.23.3.1)

Fig. 23.12 Superexchange - |v>
model v A /;\ N
'E Y
B2
¥ N\

li> — >
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0V, 0

H=|VIE,V,|. (23.169)
0V, o0

For simplification we choose V| = V.
Let us first consider the special case of a resonant intermediate state £, = 0:

(23.170)

ey
|
o< o
<o<
o< o

Obviously one eigenvalue is A\; = 0 and the corresponding eigenvector is

c,=[o}. (23.171)

The two remaining eigenvalues are solutions of

I-xv ol
O=det! V.-X V I = A=\ +2V?) (23.172)
Lo v -l
which gives
M3 = +V2V. (23.173)

The eigenvectors are
1
Cos=|+v2]. (23.174)
1

From the initial values

ay+ay+as 1
CO) = V2a—+2a; | =1[0 (23.175)
—ay +a + a3 0

the amplitudes are calculated as

1 1
al = E aZ = Cl3 = Z (23176)

and finally the solution is
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1 1 1
c=ifo)+i{wva)ervil _yz)emvan
2 4 4
-1 1 1
%—F%cos %t
1 1 V2V
—7 T 300851

Let us now consider the case of a distant intermediate state V < |E»|. A\; = 0 and
the corresponding eigenvector still provide one solution. The two other eigenvalues
are approximately given by

E? E, E, E, 4v?
M=% )-24+2V2+ =~ =+ —(1+—5 23.178
23 2 + + 5 > > a1+ E2 ) ( )

M~ E +2V2 Az & 2v? (23.179)
2~ L £ 3~ £ .

and the eigenvectors by

1 1
C, ~ EV + %_\; C;~ _% i (23.180)
1 1

From the initial values
1 a) +ay + a3
CO=(10]= ar\y + az A3 (23.181)
0

—a)+ay + a3

we calculate the amplitudes

1 V2 1 2v2
== N — ~—-\l—— 23.182
@=z @ E2 a3 ~ 3 ( E2 ) ( )
and finally the solution
1 _ Lo,
sl+emny
Cr | Yombr - %e—#é . (23.183)

1 _1avy
5(_1 +e mE
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1 IO

L AN A Y
VAR A ./

0.8 i —
L s i
0.6 - 1 -
- k4 .
04 7 .
- I'u .
02 .t —
L~ n \ ”~ VAN ~ A ~ -
ol \AVAVENVRVAR AN
0 2 4 6 8 10

1 T T ‘ T ‘ T
0.8 =
0.6 —
0.4 .
021 e
oz T ]
0 2 4 6 8 10

time

Fig. 23.13 (Numerical simulation of the superexchange model) The equations of motion for the
model (23.169) are solved numerically with the 4th order Runge—Kutta method. The energy gap
is varied to study the transition from the simple oscillation with w = ﬁV/ h (23.177) to the
effective two-state system with w = Vs /h (23.184). Parametersare V) = V, = 1, Ey = E3 =0,
E, = 0,1,5,20. The occupation probability of the initial (solid curves), virtual intermediate
(dashed curves) and final (dash-dotted curves) state are shown

The occupation probability of the initial state is

O = 14 e B = cost (o (23.184)
4 hE,

which shows that the system behaves like a 2-state system with an effective interaction
of

VZ
Veis = 5 (23.185)

Numerical results are shown in Fig.23.13.

23.3.4 Ladder Model for Exponential Decay

For time independent Hamiltonian the solution (23.132) of the Schroedinger equation
is a sum of oscillating terms and the quantum recurrence theorem [312] states that the
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Fig. 23.14 Ladder model

system returns to the initial state arbitrarily closely after a certain time 7,. However,
if the initial state is coupled to a larger number of final states, the recurrence time
can become very long and an exponential decay observed over a large period. The
ladder model [313, 314] considers an initial state |0 > interacting with a manifold

of states |1 > ... |n >, which do not interact with each other and are equally spaced
(Fig.23.14)
ov...v
V E,
H=] . ) E;=E +(j—1DAE. (23.186)
14 E,

The equations of motion are
ihCo=V Y C;
j=1
ihC; = E;C; + V(. (23.187)
For the special case AE = 0 we simply have

—nCy (23.188)

with an oscillating solution

Vv
Coy ~ cos ( ;i/r—tt) . (23.189)

Here the n states act like one state with an effective coupling of V i/n.
For the general case AE = 0 we substitute

Cj = ujeW’ (23190)



550 23 Simple Quantum Systems

and have

Ei
ih

ihijem" = V(. (23.191)

Integration gives

t

E/ ’
uj = e~ ' Co(t)dt’ (23.192)
1y
and therefore
\% ! JEj
= / RN Cy 1 dr . (23.193)
to
With the definition
E; =j*hAw (23.194)
we have
. V < V? to
Co=3 > C=—77 Z/ AN Cy (et . (23.195)
j=1 i

We replace the sum by an integral over the continuous variable
w=jAw (23.196)

and extend the integration range to —oo - - - 00. Then the sum becomes approximately
a delta function

o 0
_— cpdw 2
> AN / S e PR (23.197)
oo Aw  Aw

Jj=—00
and the final result is an exponential decay law

27V? _ 27V?2
Raw 'k

Co = p(E)Co (23.198)

with the density of final states

1 1
p(E) = ——

= —. 23.199
hAw  AE ( )

Numerical results are shown in Fig.23.15.
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Fig. 23.15 (Numerical
solution of the ladder model)
The time evolution of the
ladder model (23.187) is
calculated with the 4th order
Runge—Kutta method for N
= 50 states and different
values of the coupling V

time

23.3.5 Semiclassical Curve Crossing

In the following we study simple models for the transition between two electronic
states along a nuclear coordinate Q.® Within the crude diabatic model the wavefunc-
tion takes the form

_(n@.0
v = (XZ(Q’ t)) (23.200)

where the two components refer to the two electronic states.
The nuclear wavefunctions X obey a system of coupled equations (M is the
reduced mass corresponding to the nuclear coordinate)

T s Ei(Q) V(Q)

Here E| »(Q) are the diabatic potential energy surfaces which cross at a point Q..

and V(Q) is the coupling matrix element in the diabatic basis.
According to Ehrenfest’s theorem, the average position

o = / [Ix1(Q, 0P + 1x2(Q,0I’] 0dQ (23.202)

8For a diatomic molecule, e.g. the nuclear coordinate is simply the distance R of the two nuclei.
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obeys an equation of motion which looks very similar to its classical counterpart

Mdzé(z)—f——av
dr? T o0

—ZE(Q) —5V(0)
/ 0 (x1(Q.0* x2(Q, 1) )( —%V(Q) —%Ez(Q)) x2(Q, 1)

(23.203)

The semiclassical approach approximates both nuclear wavefunctions as one and
the same narrow wave packet centered at the classical position Q(t) = Q(¢). Equa-
tion (23.203) then becomes

2

d 9
M7500 = —55 (a@)" b)) (

E(Q@) V(Q®) ) (a(t))
00 '

V(Q(1) Ex(Q(n) ) \ b(r)

Substitution of

X100, 1) = x2(0,1) = ¢(Q, 1) (23.204)
in (23.200)
_fa®)

and taking the average over Q, which in fact means to replace Q by Q(¢), the
semiclassical approximation is obtained:

S (a®)\ _ (Ei(Q@) V(Q()) a(t)
’h(ba)) = ( V() Ez(Q(t))) (b(r)) : (23.:206)
In Problem 23.5 we compare the solutions of (23.201) and (23.206). The two wave

packets are propagated with the split-operator-Fourier transform method Sect. 23.2.2.
For a small time step At the propagator is approximated as a product

At
exp EH

_ . h O? At (E(Q) V(Q) .. h 0?
_expl’A’Wa_QZ]exp’E ( V(0 Ez(Q))]eXp[lAtma_Qz] o
(23.207)
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where the kinetic energy part is evaluated in Fourier space and the potential energy
part requires diagonalization of a 2 x 2 matrix for each grid point. From the resulting
wavefunction the average position Q(t) is calculated which is needed to define the
trajectory for the semiclassical approximation. Equation23.206 is then solved with
the Runge—Kutta method. The initial wavefunction is a Gaussian wave packet on one
of the diabatic surfaces with constant momentum (as in 23.117). Figure 23.16 shows
an example from Problem23.5.

23.3.6 Landau-Zener Model

This model describes crossing of two states, for instance for colliding atoms or
molecules [315, 316]. It is assumed that in the vicinity of the crossing point the
interaction V is constant and the time dependency of the energy gap is linearized
(Fig.23.17)

V() =V (23.208)

AE(t) = E2(Q()) — E\(Q(1)) = AE, + vt. (23.209)

The Hamiltonian matrix of the Landau—Zener model is

s o

N o0
T
| |

0 L 1 AVAVAVAVAVAVAVAVAVATAVAAVATS

30 T T T T T T

200 Q,® .

10 AE(t) ]

classical position Q, occupation probability

energy gap AE

L | L | L |
0 1 2 3
time

Fig. 23.16 (Semiclassical approximation of a curve Crossing) The crossing between two states is
simulated for coupling V = 1.23, velocity = 12 and slope = 0.4. (Problem23.5). Top the semiclas-
sical approximation (black) reproduces the occupation probability from the full quantum calculation
(red) quite accurately. Generally, it shows more pronounced oscillations than the quantum calcu-
lation with wave packets of finite width. Bottom If the initial velocity is large enough, acceleration
is not important and the classical position (black) as well as the energy gap (red) become linear
functions of time
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0 Vv
H:(VAEU)). (23.210)

For small interaction V or large velocity 561 AE =Q % AFE the transition probability
can be calculated with perturbation theory to give

27 V?
- 23.211)
hg AE
This expression becomes invalid for small velocities. Here the system stays on the
adiabatic potential surface, i.e. P — 1. Landau and Zener found the following
expression which is valid in both limits:

27V2
Piz=1—exp (—hgm). (23.212)
ot

In case of collisions multiple crossing of the interaction region has to be taken into
account (Fig.23.18).
Numerical results from Problem 23.6 are shown in Fig.23.19.

Fig. 23.17 Slow atomic collision

O
O |F

\

Fig. 23.18 Multiple passage of the interaction region
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V=0.1,0.14,0.2
' I ' I

' I
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time
Fig.23.19 (Numerical solution of the Landau—Zener model) Numerical calculations (solid curves)

are compared with the Landau—Zener probability (23.212, dashed lines) and the approximation
(23.211, dotted lines) The velocity is dAE /dt = 1. (Problem 23.6)

23.4 The Dissipative Two-State System

A two-state quantum system coupled to a thermal bath serves as a model for magnetic
resonance phenomena, coherent optical excitations [317, 318] and, quite recently,
for a Qubit, the basic element of a future quantum computer [319, 320]. Its quantum
state can not be described by a single wavefunction. Instead mixed quantum states
have to be considered which can be conveniently described within the density matrix
formalism [277].

23.4.1 Egquations of Motion for a Two-State System

The equations of motion for a two-state system are

ihpiy = Hizpa1 — p1oHoy (23.213)

ihpy = Hoip1a — p21Hio (23.214)
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ihpra = (Hyi — Hn)piz + Hiz(p22 — p11) (23.215)

—ihpy = (Hiy — Hp)pa1 + Hoi(pn — p11) (23.216)

which can be arranged as a system of linear equations’

P11 0 0 —H> Hi, P11
in p:zz _ 0 0 Hy; —Hy, P22

. 23.217
P12 —Hy;; Hpp Hy— Hyp 0 P12 ( )
/'721} \ Hy —Hy 0 Hy — Hll} \Pm}
23.4.2 The Vector Model
The density matrix is Hermitian

its diagonal elements are real valued and due to conservation of probability
P11 + pap = const. (23.219)

Therefore the four elements of the density matrix can be specified by three real
parameters, which are usually chosen as

x = 2%pa (23.220)
y = 23pa1 (23.221)
Z=pi—pm (23.222)

and satisfy the equations

d 1 ~

529{(021) =7 ((Hyy — Hp»)23(p21) + 23(H12) (p11 — p22)) (23.223)
d__ I \

EZ&V(PM) = ((Hiy — Hp)2NR(p21) — 20(H12) (p11 — p22)) (23.224)

(S(H12)2R(p21) + RH1223(p21)) - (23.225)

St o

d( )=
dr P11 — P22) =

9The matrix of this system corresponds to the Liouville operator.
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Together they form the Bloch vector

(23.226)

..,
Il
N =

which is often used to visualize the time evolution of a two-state system [321]. In
terms of the Bloch vector the density matrix is given by

Lz x—iy 1
(pll p12) _ (x+2iy é ) — 5(1 +ro) (23.227)

P21 P22 3 5

with the Pauli matrices

sz((l)é), ayz(??)i), a—z=(1_1). (23.228)

From (23.223-23.225) we obtain the equation of motion

_\, Hu—Hy» _ _ 23(Hp)
FE: YR <Th
_ — Hy—Hy _  20(Hip)
dr yil| = P 7 2 (23.229)
Z x 2‘«‘(}?12) +y 23?(512)

which can be written as a cross product

d
—Ir=wxr (23.230)
dt
with
ZNH»
w = —23H)» ) (23.231)
+(Hii — Hy)

Any normalized pure quantum state of the two-state system can be written as [322]

| >= (C2> —COSE(O)-FC sz ) (23.232)

corresponding to the density matrix

cos? % e 1% sin g cos %
p= y . (23.233)

% gin ¢ cos ¢ 2 0
(&) sm2C052 Sin )
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Fig. 23.20 (Bloch sphere) Left Any pure quantum state of a two-state system can be represented
by a point on the Bloch sphere. Right The poles represent the basis states. Mixed quantum states
correspond to the interior of the sphere, the central point represents the fully mixed state

The Bloch vector
cos ¢ sin 6
r=| sin¢gsinf (23.234)
cos

represents a point on the unit sphere (the Bloch sphere, Fig.23.20). Mixed states

1
correspond to the interior of the Bloch sphere with the fully mixed state p = ( (/)2 1(/)2 )

represented by the center of the sphere (Fig.23.20).

23.4.3 The Spin-1/2 System

An important example of a two-state system is a particle with spin % Its quantum
state can be described by a two-component vector

C 1 0
(C2)=C1(0)+C2(1) (23.235)

where the two unit vectors are eigenvectors of the spin component in z-direction
corresponding to the eigenvalues s, = :I:%. The components of the spin operator are
given by the Pauli matrices

h

and have expectation values
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CrC+C3C
h Ox Ci creleic
<s==2(cics) | o, (C)=h Ge-ca | (23.237)
2 . 2 CIEZICP
2

The ensemble average for a system of spin—% particles is given by the Bloch vector

P21+p12
2

<S>=h &2‘1& = —rT. (23.238)
ﬂll;ﬂzz

The Hamiltonian of a spin-% particle in a magnetic field B is

h h( B, B, —iB,
H=-y30B=—y7 (Bx VB, B, (23.239)

from which the following relations are obtained

~B, = —%mHu (23.240)
VB, = %Q"le (23.241)
B, = — ; Hy (23.242)
w = —B. (23.243)

The average magnetization

h
m=y<S>= 'yzr (23.244)
obeys the equation of motion

d
am = —yB x m. (23.245)

23.4.4 Relaxation Processes - The Bloch Equations

Relaxation of the nuclear magnetization due to interaction with the environment
was first described phenomenologically by Bloch in 1946 [323]. A more rigorous
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description was given later [324, 325] and also applied to optical transitions [326].
Recently electron spin relaxation has attracted much interest in the new field of
spintronics [327] and the dissipative two-state system has been used to describe the
decoherence of a Qubit [328].

23.4.4.1 Phenomenological Description

In thermal equilibrium the density matrix is given by a canonical distribution

q e
= ——— 23.246
p tr(e=FH) ¢ :
which for a two-state system without perturbation
A
Hy = ( 2, ) (23.247)
-2
becomes
e—P4/2
p = T s (23.248)

where, as usually 3 = 1/kgT. If the energy gap is very large A > kgT like for an
optical excitation, the equilibrium state is the state with lower energy'’

00
°eqd
P = (01). (23.249)

The phenomenological model assumes that deviations of the occupation difference
from its equilibrium value

1 — p5 = —tanh 4 (23.250)
pll p22 2kBT °

decay exponentially with a time constant 7} (for NMR this is the spin-lattice relax-
ation time)

d 1
—  (pn —p2) =—=[(p11 — p22) — (O] — 5D . (23.251)
dt |Rel P P T, [ p p Pt P

10We assume A > 0, such that the equilibrium value of z = pj; — p22 is negative. Eventually, the

two states have to be exchanged.
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The coherence of the two states decays exponentially with a time constant 75
which is closely related to 7} in certain cases!! but can be much smaller than 7; if
there are additional dephasing mechanisms. The equation

d 1

— = —— 23.252
ar ‘Relﬂlz 3 P12 ( )

describes the decay of the transversal polarization due to spatial and temporal differ-
ences of different spins (spin-spin relaxation), whereas for an optical excitation or a
Qubit it describes the loss of coherence of a single two-state system due to interaction
with its environment.

The combination of (23.245) and the relaxation terms (23.251, 23.252) gives
the Bloch equations [323] which were originally formulated to describe the time
evolution of the macroscopic polarization

+00
dm Lo
e —yBxm—-Rm-m,) R=|20 5 0 (23.253)
1
00 +
For the components of the Bloch vector they read explicitly
e —1/T,  —3(Hy — H»n) —%3H), . 0
5 y = lh(H” —sz) —1/T2 —%mle y + OT
. 23H), 29 H,, ~1/T ¢ Zeg/ T
(23.254)

23.4.5 The Driven Two-State System

The Hamiltonian of a two-state system (for instance an atom or molecule) in an
oscillating electric field Ee s’ with energy splitting A and transition dipole moment

s

A _ —iwt
H:( > pke ) (23.255)

_ iw/t _A
nEe 3

The corresponding magnetic field

2
B, = —pE coswyt (23.256)
~h

"For instance 7> = 2T for pure radiative damping.



562 23 Simple Quantum Systems

2
B, = %ME sinwyt (23.257)
A
B, =—— (23.258)
~h

is that of a typical NMR experiment with a constant component along the z-axis and
a rotating component in the xy—plane.
23.4.5.1 Free Precession

Consider the special case B, = const, B, = B, = 0. The corresponding Hamil-
tonian matrix is diagonal

Mo
H = ( (2) _M) (23.259)
2

with the Larmor-frequency

A
2 =15 =B (23.260)

The equations of motion for the density matrix are

_(p11—px) — (p1] — P53)
T

0
- _ = 23.261
ot (p11 — p22) (23.261)

0 1
ih— = h$2 —ih— 23.262
iho, P12 0p12 — 1 T2P12 ( )

with the solution

(p11 — p2) = (P11 — P53 + 1(p11(0) — p22(0)) — (P9 — p55)1e™/T (23.263)

p12 = pra(0)e /T, (23.264)

The Bloch vector

(x0 cos 2ot — yg sin 2ot)e /T2

r = | (yocos 2ot + xgsin 2ot)e /T2 (23.265)
7 + (z0 — z%)e /T

is subject to damped precession around the z—axis with the Larmor frequency
(Fig.23.21).
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Fig. 23.21 (Free precession) The Bloch equations (23.254) are numerically solved with the 4th
order Runge Kutta method. After excitation with a short resonant pulse the free precession is
observed. Left The occupation difference z = pj; — p22 decays exponentially to its equilibrium
value. Right In the xy-plane the Bloch vector moves on a spiral towards the equilibrium position
(x=0,y=0)

23.4.5.2 Stationary Solution for Monochromatic Excitation

For the two-state system (23.255) with

Hii — Hp = A = h$2, (23.266)

Hip = Vo(coswyt —isinwyt) (23.267)

the solution of the Bloch equations (23.253)

e —1/T, -2 20 sinw;t X 0

vl R 2 -1/T, —Z—;f)coswft y|+ 0

z —hsinwsr Focoswpr  —1/T; z Zeq/Th
(23.268)

can be found explicitly [317]. We transform to a coordinate system which rotates
around the z-axis (Sect. 14.3 on page 330) with angular velocity w

x’ cos(wyt) sin(wyt) 0 x X
¥y | = | —sin(wyt) cos(wyst) O yl=A® |y |- (23.269)
4 0 0 1 z z
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Then
x/ X X x' 0
d , : d A A—1 -1 /
— | Y |=Aly|+A= |y | =(AAT" +AKA )| Y |+A]| O
dr \ 7, dt / Zeg
z z z z T
(23.270)
with
—1/T, —£2 20 sinw;t
K= 20 -1/T; —% coswyt | - (23.271)
—%sinwft%coswft —1/T
The matrix products are
. 0 wy 0 —1/T2 —.QO 0
AA'=W=|-w; 00] AKA' = 2, -1/, -3
0 00 0 o 1T,
(23.272)
and the equation of motion simplifies to
)(z/ —712 wf — 20 0 x’ 0
v | = 20 — wr —712 _2_}‘;0 y’ + Oq . (23.273)
; 2V, 1 / faid
7/ 0 ho -7 z T

For times short compared to the relaxation times the solution is approximately given
by harmonic oscillations. The generalized Rabi frequency §2x follows from [329]

i2px = (W — 20 (23.274)
2V,
12y = (20 —wp)x' — T‘)z’ (23.275)
2V,
i2p7 = T‘)y’ (23.276)
as

2
2k = \/ (20— wp)? + (2—;/0) : (23.277)
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Fig. 23.22 (Monochromatic Excitation) The Bloch equations are solved numerically with the 4th
order Runge—Kutta method for a monochromatic perturbation with w = 4, Vy = 0.5. Parameters
of the two-state system are wg = 5, z,q = —1.0 and T} = T, = 5.0. The occupation difference
z = p11 — p22 initially shows Rabi oscillations which disappear at larger times where the stationary
value z = —0.51 is reached

Atlarger times these oscillations are damped and the stationary solution is approached
(Fig.23.22) which is given by

2T % (20 — wy)
v S . —2T2 . (23.278)
1 +45 N+ T (wr — $20) 1+T22(wf—520)2

7%

The occupation difference

4 T] T,
z=pu—pn=z"\1- (23.279)
1+4 T]T2+T ((Uf—.Qo)z

has the form of a Lorentzian. The line width increases for higher intensities (power
broadening)

A ! 1+4V2TT (23.280)
w = —_— .
T2 2 112

and the maximum

Z(Qo) _ 1
7% - V02
1+48TT

(23.281)

approaches zero (saturation) (Figs.23.23, 23.24).



566

-0.7970

-0.7975

-0.7980

-0.7985

P117Pas

7=

-0.7990

-0.7995

-0.8000

23 Simple Quantum Systems

frequency ®

Fig. 23.23 (Resonance line) The equations of motion of the two-state system including relaxation
terms are integrated with the 4th order Runge—Kutta method until a steady state is reached. Para-
meters are wy = 5, Zeg = —0.8, V. = 0.01 and T} = T = 3.0, 6.9. The change of the occupation
difference is shown as a function of frequency (circles) and compared with the steady state solution

(23.278)

Fig. 23.24 (Power
saturation and broadening)
The resonance line is
investigated as a function of
the coupling strength V and
compared with the stationary
solution (23.278) to observe
the broadening of the line
width (23.280). Parameters
are wyg = 5, z¢g = —1.0,

T, = T» = 100 and

V =0.5,0.25,0.125,
0.0625, 0.03125

23.4.5.3 Excitation by a Resonant Pulse

5 6 7
frequency @

For a resonant pulse with real valued envelope V;(#) and initial phase angle @

Hyy = V() e (o +90)

the equation of motion in the rotating system is
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X/ —le 0 ZV%(’) sin @q X' 0
y:/ = 0 —Ti 2V°(t) cos P Y]+ 0
2 200 i @y 20 cos b, -t 2 %
1
(23.282)

If the relaxation times are large compared to the pulse duration this describes approx-
imately a rotation around an axis in the x y—plane (compare with 14.24)

d | 2V0(t)
v~ W 23.283
dtl~ ©r h Wor ( )

0 0 —sind
Wo = 0 0 —cosdy |. (23.284)
sin @ cos P 0
Since the axis is time independent, a formal solution is given by

r(1) = eV A (0) = PO (0) (23.285)

with the phase angle

"2V (t
10 =/ o) 4yt (23.286)
0w N
Now, since

—sin’®y  —sinPycos Py 0
W= —sin®dycos®y —cos’®, O (23.287)

0 0 -1
W2 = —W, (23.288)
Wy =—-W; (23.289)

the Taylor series of the exponential function in (23.285) can be summed up

1
‘QD Wo+

1
‘p=1+q§W0+—<D2W02+3

2

, (®* o @3
=l+Wol 5 — gt )t Wl -5+
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Fig. 23.25 (Rotation of the
Bloch vector by a resonant
pulse) A resonant pulse
rotates the Bloch vector by
the angle @ around an axis
in the x’y’-plane

=1+ W; (1 —cos®)+ Wysin®

1 — sin? Dy (1 —cos®) —sindycos Py (1 —cosP) —sin Py sin @
= —sin®ycos @y (1 —cos @) 1 —cos?Py(1 —cos®) —cosdsind

sin @ sin @ cos @ sin @ cos @
cos @y sin®y 0 1 0 0 cos @y —sin Py 0
= | —sin®y cos Py 0 0cos® —sin @ sin®y cos®y 0
0 0 1 0sin® cos@® 0 0 1
(23.290)

The result is a rotation about the angle @ around an axis in the xy—plane deter-
mined by @, (Fig.23.25), especially around the x —axis for @, = 0 and around the
y—axis for @y = 7.
After a m—pulse (@ = ) the z-component changes its sign

cos(2®y) —sin(2®y) 0

r' = [ —sin(2@g) —cos(2®y) 0 | r(0). (23.291)
0 0 —1
The transition between the two basis states z = —1 and z = 1 corresponds to a spin

flip (Fig.23.26). On the other hand, a 7/2—pulse transforms the basis states into a
coherent mixture

1 —sin?®, — sin®ycos Py — sin Py
r = —sin®gcos @y 1 —cos>?P, —cosdPy |r(0). (23.292)
sin @ cos D 0
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Fig. 23.26 (Spin flip by a w-pulse) The equations of motion of the Bloch vector (23.268) are
solved with the 4th order Runge—Kutta method for an interaction pulse with a Gaussian shape.
The pulse is adjusted to obtain a spin flip. The influence of dephasing processes is studied.
Ty = 1000, t, = 1.8, Vo = 0.25. The occupation difference pi; — p22 = z (solid curves) and

the coherence |p12| = %\/xz + y2 (broken curves) are shown for several values of the dephasing
time 7> = 5, 10, 100, 1000

23.4.6 Elementary Qubit Manipulation

Whereas a classical bit can be only in one of two states

either ((1)) or ((1)) (23.293)

the state of a Qubit is a quantum mechanical superposition

[ >= Co ((1)) + C ((1)) . (23.294)

The time evolution of the Qubit is described by a unitary transformation

b >— Ul > (23.295)

which is represented by a complex 2 x 2 unitary matrix that has the general form
(see also Sect. 14.15)

_ o ﬂ 2 2 _ _ g
U_(—ewﬂ* e‘“’a*) o+ 181" =1, detU =e'’. (23.296)
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The Bloch vector is transformed with an orthogonal matrix A, which can be found
from (23.227) and the transformed density matrix U pU ~!

N ((a2 — ﬁz)e’iw) 3 ((cu2 + 62)6’1’*’) —20 (aﬁe’w)
r— Ar A= [ I((#—aHe ™) R (@ +5He ) 23 (afe¥)
20 B) 23(a ) (lal* =181
(23.297)

Any single Qubit transformation can be realized as a sequence of rotations around
just two axes [318, 319, 330]. In the following we consider some simple transfor-
mations, so called quantum gates [331].
23.4.6.1 Pauli-gates
Of special interest are the gates represented by the Pauli matrices U = o; since any
complex 2 x 2 matrix can be obtained as a linear combination of the Pauli matrices

and the unit matrix (Sect. 14.15). For all three of them det U = —1 and ¢ = 7.
The X-gate

01
Ux =0, = (1 0) (23.298)

corresponds to rotation by 7 radians around the x —axis (23.291 with @y = 0)

10 0
Axy=[0-10}. (23.299)
00 —1

It is also known as NOT-gate since it exchanges the two basis states. Similarly, the
Y-gate

0 —i
Uyzo'yz(i Ol)

rotates the Bloch vector by 7 radians around the y—axis (23.291 with @y = 7/2)

—-10 0
Ay=1 010 (23.300)
0-1
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and the Z-gate

10

by 7 radians around the z—axis

-100
A, = 0 —10]. (23.302)
0 01

This rotation can be replaced by two successive rotations in the xy—plane

Az = AxAy. (23.303)
The corresponding transformation of the wavefunction produces an overall phase
shift of 7/2 since the product of the Pauli matrices is 0,0, = io,, which is not
relevant for observable quantities.
23.4.6.2 Hadamard Gate
The Hadamard gate is a very important ingredient for quantum computation. It trans-

forms the basis states into coherent superpositions and vice versa. It is described by
the matrix

Un = (_ _L) (23.304)
N

with det Uy = —1 and

_s‘l_
S

Ap=l0=10 (23.305)

which can be obtained as the product

00 -1 10 0
Apy=1010 0-10 (23.306)
100 00 —1
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of a rotation by 7 radians around the x—axis and a second rotation by 7/2 radians

around the y-axis. The first rotation corresponds to the X-gate and the second to
(23.292) with @y = 7/2

L
U= ( 2 ) (23.307)
T2 2

Problems

-6

Problem 23.1 Wave Packet Motion

In this computer experiment we solve the Schroedinger equation for a particle in
the potential V (x) for an initially localized Gaussian wave packet ¢ (t = 0, x) ~
exp(—a(x — x¢)?). The potential is a box, a harmonic parabola or a fourth order
double well. Initial width and position of the wave packet can be varied.

e Try to generate the stationary ground state wave function for the harmonic oscil-
lator

e Observe the dispersion of the wave packet for different conditions and try to
generate a moving wave packet with little dispersion.

e Try to observe tunneling in the double well potential

Problem 23.2 Two-state System

In this computer experiment a two-state system is simulated. Amplitude and fre-
quency of an external field can be varied as well as the energy gap between the two
states (see Fig.23.9).

e Compare the time evolution at resonance and away from it
Problem 23.3 Three-state System
In this computer experiment a three-state system is simulated.

e Verify that the system behaves like an effective two-state system if the intermediate
state is higher in energy than initial and final states (see Fig.23.13).

Problem 23.4 Ladder Model

In this computer experiment the ladder model is simulated. The coupling strength
and the spacing of the final states can be varied.

e Check the validity of the exponential decay approximation (see Fig.23.15)
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Problem 23.5 Semiclassical Approximation

In this computer experiment we study the crossing between two states along a nuclear
coordinate. The time dependent Schrodinger equation for a wave packet approach-
ing the crossing region is solved numerically and compared to the semiclassical

approximation.

e Study the accuracy of the semiclassical approximation for different values of cou-
pling and initial velocity

Problem 23.6 Landau-Zener Model

This computer experiment simulates the Landau Zener model. The coupling strength
and the nuclear velocity can be varied (see Fig.23.19).

e Try to find parameters for an efficient crossing of the states.

Problem 23.7 Resonance Line

In this computer experiment a two-state system with damping is simulated. The
resonance curve is calculated from the steady state occupation probabilities (see

Figs.23.23,23.24).

e Study the dependence of the line width on the intensity (power broadening).
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Fig. 23.27 (Generation of a coherent mixture by a 7/2-pulse) The equations of motion of the Bloch
vector (23.268) are solved with the 4th order Runge—Kutta method for an interaction pulse with
a Gaussian shape. The pulse is adjusted to obtain a coherent mixture. The influence of dephasing
processes is studied. 71 = 1000, ¢, = 0.9, Vo = 0.25. The occupation difference p11 — p22 = z

(solid curves) and the coherence |p12| = %\/x2 + y2 (broken curves) are shown for several values
of the dephasing time 7> = 5, 10, 100, 1000
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e

Fig. 23.28 (Motion of the Bloch vector during 7/2 and 7 pulses) The trace of the Bloch vector is
shown in the laboratory system. Left 7/2—pulse as in Fig.23.27 with 7, = 1000. Right m—pulse as
in Fig. 23.26 with 7, = 1000

Problem 23.8 Spin Flip

The damped two-state system is now subject to an external pulsed field (see
Figs.23.26, 23.27, 23.28).

e Try to produce a coherent superposition state (7/2 pulse) or a spin flip (7 pulse).
e Investigate the influence of decoherence.




Chapter 24
Variational Methods for Quantum Systems

The variational principle states, that the energy expectation value of any trial function
is bounded from below by the exact ground state energy. Therefore, the ground state
can be approximated by minimizing the energy of a trial function which involves
certain parameters that have to be optimized. In this chapter we study two different
kinds of quantum systems. First we apply the variational principle to one- and two-
electron systems and calculate the ground state energy of the Helium atom and the
Hydrogen molecule. If the trial function treats electron correlation explicitly, the
calculation of the energy involves unseparable multidimensional integrals which
can be efficiently evaluated with the variational quantum Monte Carlo method. In
a second series of computer experiments we study models with a large number of
variational parameters. We simulate excitons in a molecular aggregate which are
coupled to internal vibrations. The number of parameters increases with the system
size up to several hundred and the optimization requires efficient strategies. We use
several kinds of trial functions to study the transition from a delocalized to a localized
state.

The variational principle is a very valuable tool to approximate the groundstate

energy and wavefunction. Consider the representation of the Hamiltonian in a com-
plete basis of eigenfunctions [277]

H=>" |ty > E, < (24.1)

with the groundstate energy
EO = En (242)
and a trial function with some adjustable parameters

wtrial (A) . (243)
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The expectation value of the Hamiltonian

< wtrialetrial >= Z | < wtrial|¢n > |2En = EO Z| < wtrial|wn > |2
n n

=Ey < 1l)trial |:Z |wn >< wn|:| wtrial >= E0|wtrial|2- (244)

Hence the energy expectation value is bounded from below by the groundstate energy

< riaH rial =
= Yoict Yot > w’z L~ > E. (24.5)
|wtria1|

For the exact groundstate

< to|H|vpo >
[1o?

and the variance

< o|H? > < o|H >\’
ol = Yol |21/Jo B ( o |;/J0 ) _o (24.6)
|20l [0l

Now, let us try to find an approximate solution of the eigenvalue problem

Hvy = Eyy (24.7)
by optimizing the trial function. The residual is

R= H’l/}trial - EO'l/}trial (24.8)
and, applying Galerkin’s method (p. 272) we minimize the scalar product

< wtrialR >=< wtrialetrial > _EO < ¢trial|¢trial > (249)

where the trial function should be normalized. Alternatively, we divide by the squared
norm and minimize

< wtrialH ¢trial >

— E,. (24.10)
< wtrialldjtrial > 0

Hence the “best” trial function is found by minimizing the energy with respect to
the parameters \.
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Now, assume that the groundstate is normalized
lol? =1 (24.11)

and choose the normalization of the trial function such that

Yrriat = Yo + p (24.12)
< olp >=0. (24.13)
Then,

< wtrialHq/)trial > . E()+ < ,OHp >
|wtrial|2 1+ |,0|2

= Ey+ 0(p*) (24.14)

the accuracy of the energy is of second order in |p|. From

< wtrialewtrial > _ E(%"‘ < szp >
|wm’a1|2 1 + |P|2

(24.15)

we find that the variance of the energy

2 _
O =

< VuriatH* Vit > < VniatHYwial >\’
[Vrria|* B ( [Vrria® )
_ E}+ < pH?p > (E0+ < pHp >)2
1+ [pl? 1+ |pl?
~ EL(1— |pl)+ < pH?p > —E5(1 = 2|p|*) — 2Ey < pHp >
%Eg < plp >2 4 < pH|Hp > —2Ey < pHp >
~ |(H — Eo)pl® (24.16)

is also second order in |p|. It is bounded from below by zero. Therefore, Quantum
Monte Carlo methods often minimize the variance instead of the energy for which
the lower bound is unknown.

24.1 Variational Quantum Monte Carlo Simulation
of Atomic and Molecular Systems

Electron structure calculations for atoms and molecules beyond the self consistent
field level (Hartree Fock uses one Slater determinant as a trial function, MCSCF
methods a combination of several) need an explicit treatment of electron correla-
tion. This can be achieved by expanding the wavefunction into a large number of
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configurations (CI method) or, alternatively, by using trial functions which depend
explicitly on the electron-electron distances. Very popular [332, 333] are factors of
the Jastrow pair-correlation [334] type

exp { > U(ry) (24.17)

i<j
where in the simplest case

ar,-j

VU =
ij

(24.18)

has the form of a Pade approximant. Wavefunctions including a Jastrow factor do
not factorize and make it necessary to apply Monte Carlo integration methods to
calculate the energy expectation value (see p. 205). For the computer simulation of
two-electron systems we use trial functions of the type

= e Hla g oari2/ (1+0r12) (24.19)

which are products of two 1s-orbitals centered at the (possibly same) positions r, ;
and a Jastrow factor. In the following, we abbreviate

u=1+ Brpo. (24.20)

Starting with the derivatives

0 KX1q axyn

8_¢=_ 21/) (24.21)

X1 Ia rpu

821/)_ F¥la | 012 ?

ox? N T'la riou?
K KX}, o ax, afBxi,

T+ = |+ 2 3 2_2 2 3 ¥ (24.22)
Fla rla rpu }"121/{ rlzu

we calculate the kinetic energy

1 Ckz aR (T4 ryp \ I'i2
T = =3 (Vi +V3)0 = [—n2—7+—2(———)— v

u Ia by ) T2

N [i IR Qa_ﬁ] " (24.23)

Ia p ripu? u?

For short electron-electron distance
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Fig. 24.1 Geometry of H2+

Ia b ) T2 Ila rp r2

a 2
Ty — |:—/<2—a2+a/<;(1—rﬂ)rﬁ+i+i+2aﬁ——aj|1/).

(24.24)

A choice of o = 1/2 cancels the divergent Coulomb repulsion at rj — 0 and
fulfills the electron-electron cusp condition [333, 335]. More complicated Jastrow
factors also allow to fulfill the electron-nuclei cusp conditions.

24.1.1 The Simplest Molecule: H;'

As a first example (Problem 24.1), we consider an electron moving in the Coulomb
field of two protons (Fig.24.1). Applying the Born-Oppenheimer approximation the
protons are kept fixed at a distance R. In atomic units,' the Hamiltonian is

1_, 1 1 1
H=T+V=—-V"— — — — 4 —. (24.25)
2 r« Iy, R

This eigenvalue problem can be solved exactly (using elliptic coordinates) and is
also a popular example for the variational method.

As a trial wavefunction we use the linear combination of two hydrogen-like 1s
orbitals

K3 K3
g =4/ —€ " pp=,/—e"" (24.26)
T ™

which are solutions for the problem with two nuclear charges « at infinite distance.
At finite distances, the variational parameter x is a measure of the effective nuclear
charge. For large distance x = 1 as for a single proton whereas at short distances the
optimum value approaches x = 2 as for the He™ ion.

Since the problem is highly symmetric,we take a symmetric combination

lie. setting ap = 47r80h2/€2m,3 = 1 and hz/me =1.
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1
trial = — oo % + 24.2
Prrial e [@a £ @] (24.27)

where the overlap integral can be calculated using elliptic coordinates

R R
ra=—(A+u) rb=—(/\—u)

3
///%obdv —27r/ dA/ dp 253\ — ) e HRA
K2R2

—nR

(24.28)
The action of the Hamiltonian is

" 1(, 2r L1 Lt O K2 4]
= —— K — — _—_—— = — = | —— —_— —_
va 2 rq Ya R r, 1 va p Ty 2 R va

(24.29)

H 1(, 2k Lfro1 o1 L K> Ll
= —— KR — — _—_— = — =|—— _— —
wb 2 p wb R rqo 1 wb ra p 2 R wb

(24.30)

Howr — 1 ( K K? Yo + kK2 N 1 1 1 _
Prrial = MEIND B Pa - ) Pb R T ™ Prrial
from which we obtain the local energy

11 1 27 Epat s
B, — [ ______ "’“_} Lo (24.31)
Pa £ Pp

For comparison, we calculate the expectation value of the energy

1 H,, +H,
< PrriatH Prrial >= 20£5) (Haa + Hpp + Hyp + Hpo] = 1is (24.32)
with the matrix elements
Hyy = Hy = — — — —/ Laqy 4 (5 — 1)/ Za gy (24.33)

r(l

1 2 a a
Hy = Hy, = (— - ”—) s —/ PaPb gy 4 (k- 1)/ “Or‘p”. (24.34)
b
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The integrals can be evaluated in elliptic coordinates

) 1 R2 )
/ (pbdv /&dv 3/ d/\/ duZ(A _ M)e—h,R()\—Hl,)/Z =K
1 -1

(24.35)
2 2 o0 1 R2 )
/ﬂdv =/ﬁdv = 253/ d)\/ dpp—(\ + pye ROT0/2
Ta T 1 1 4
L ooy q 1y (24.36)
=——ec " - .
R "TR
00 1 RZ
/ Path gy = / Pabb gy — 3/ d)\/ du—(\ — e~
T T4 ! -1 4
=e " (k+ K’R). (24.37)

In our computer experiment (Problem24.1), we first keep = 1 fixed and use the
variational MC method to calculate the expectation value of the energy. Figure 24.2
compares the results with the exact value (24.32). Next we vary ~ and determine
the optimum value at each point R by minimizing E(R, ). Figure24.3 shows the
k-dependence for several points. The optimized x-values (Fig. 24.4) lead to lower
energies, especially at short distances. The equilibrium is now at Ry = 2.0 Bohr with
a minimum energy of —0.587 a.u. instead of 2.5 Bohr and —0.565 a.u. for k = 1.
(Exact values are 2.00 Bohr and —0.603 a.u. [277]).

0.2

energy (a. u.)
S
[\°}
T

0.6 R PPOAe - e -
| L | L | L |
1 2 3 4
distance R (Bohr)

Fig.24.2 (Adiabatic groundstate energy of H; ) The potential energy curve of H;' is calculated with
the variational method. Circles show the results from MC integration for a maximum step length
of 0.5 Bohr and averages over 2 x 10”samples for a fixed effective charge x = 1. The solid curve
shows the results of the exact integration (24.32) for comparison. Diamonds show the MC results
after optimizing ~(R) at each point. The dashed curve shows the results of the exact integration
(24.32) where x(R) was determined by solving % < YuriatH Ywiqr >= 0 numerically



582

Fig. 24.3 (Optimization of
the variational parameter s
for H;' ) The groundstate
energy from MC integration
is shown as a function of x
for R = 1 (diamonds), R = 2
(squares) and R = 3
(circles). The curves show a
fit with a cubic polynomial
which helps to find the
minima

Fig. 24.4 (Optimized
effective charge parameter
for H2+ ) The variational
parameter « is optimized by
minimizing the MC energy
as shown in Fig.24.3
(circles). The curve shows
the exact values obtained by
minimizing (24.32)
numerically

Fig. 24.5 Geometry of He
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24.1.2 The Simplest Two-Electron System: The Helium Atom

The Helium atom (Fig. 24.5) is the simplest “many-electron” system where electron-
electron interaction has to be taken into account. The electronic Hamiltonian reads

in atomic units

1 1

H=_—v$—§v§————

2

2

r

1

+—. (24.38)

2
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Without electron-electron interaction, the singlet groundstate would be simply
given in terms of hydrogen-like 1s-orbitals as

23 1
wO — _e—2rle—2r2
™

1 2)— 1 (2 1 24.39
ﬁ(T()i() @ M) ( )
with
1 1 2 2 1 1 2 2
[ e = (- ) w2 (12 ) - - T =
(24.40)

For the variational treatment (Problem24.2) we use a trial wavefunction with a
variable exponent to take the partial shielding of the central charge into account

3

. 1
Virial = %e_”‘e_mﬁ tMID-1@ 1) (24.41)

where the antisymmetric spin function accounts for the Pauli principle.
Then,

1 2K 2K 1 2 2
Hwtrial == (l‘{z - —+ l“ﬂz - _) wtrial + (_ - = _) wtrial (24.42)
2 r r2

r r r
1 -2 -2
Epe=— -2+ 24522 (24.43)
2 r r
The integration can be performed analytically [277]. First we calculate
3\ 2 3
: 1 1
(”—) / e 22 gy dy, = / 24V = k. (24.44)
m I m r

The integral of the electron-electron interaction is

K> . 1
(_) /672Hrlef2mr2 —dVlde
m ri2
I€3 2 o) o) 1
= (—) / rlzdrle_zm‘/ r%drge_zm/dﬁl/dﬂz—
™ 0 0 2

3\ 2 o] 00 2

K _ _ 4m)
= (—) / rfdrle 2’"‘/ r%drze w7
™ 0 0 max(ry, r2)
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Ii3 2 00 1 r o)
=(= / ridrie " (4m)% | — / radrye " 4 / radrye 2
u 0 r Jo r

00 1— e—2/~;r1 e—anl
= 16/{6/ ridrie — =
0 4r K 4k

= —K.

8

Together, we obtain

5 5
< YpiaHYpias >= —K* + g“ +2(k -2k = K>+ (g — 4) K (24.46)
which has its minimum at (Figs. 24.6 and 24.7)
5
Fimin =2 — 72~ 1.688 (24.47)

with the value

(24.19)

i < Va1 0~ 288
ming < Yia rial >= — > N —2. .
il il == 7556
Next, we consider a (not normalized) trial wavefunction of the Slater-Jastrow type
: 8 1
Vurial = e—»a,rle—mrzenmz/(H—drlz)E TMHILIQ—1r 2] ). (24.48)

Fig. 24.6 (Optimization of
the effective charge for the
Helium atom) The
groundstate energy of the
Helium atom was calculated
with MC integration. The
circles show the average over
107 points. The curve shows
the exact result (24.46) for
comparison. The optimum
value is k = 1.688

energy (a.u.)

|
1.5
effective nuclear charge
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energy standard deviation (a.u.)

1 1.5 2
effective nuclear charge x
Fig. 24.7 (Standard deviation of the MC energy) The Circles show the standard deviation of the

MC energy for Helium. Its minimum between x = 1.7 - - - 1.9 is close to the minimum of the energy
(Fig.24.6). The curve shows a cubic polynomial fit

285 0.5
-2.855¢ 045 =
\ C)
= 286 =
=
) i 0.4 %
> -2.865 =
o0 [9)
o . 035 ©
5 -2.87 2
<
I 2
2875 03§
| w
L | n | L | L | L L | L | L | L | L
28801 02 03 04 05 0 01 02 03 04 09

B B

Fig. 24.8 (Variation of ) The groundstate of the Helium atom is approximated with the Slater-
Jastrow wavefunction (24.48). Singularities of the potential energy are removed by using £ = 2 and
a = 1/2. Each point represents an average over 107 samples. Left The energy minimum of—2.879
is found at 5 = 0.15. Right the standard deviation has a minimum value of 0.29 at 5 = 0.35

From (24.23) with r, = r; we find the local energy

Ejpe =

k—2 k=2 1 2 2a3 a?  ka (r r r,—r
n (1_7)_’_ 3[—112——4 72(71_72)(1 2
u u u 2

r1 mn
(24.49)

With fixed values o« = 1/2 and « = 2 all singularities in the local energy are
removed, but this also reduces the flexibility of the test function. The energy minimum
of —2.879is found at 3 = 0.15 (Fig. 24.8). A further improvement can be achieved by
varying the exponent  together with 8. The minimum now is —2.885 at k = 1.91
(Fig.24.9). If we drop the cusp condition and vary all three parameters we find a
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T T T T
L 0=0.5 B=0.15
0.6

0.5

energy (a.u.)

0.4

standard deviation (a.u.)

L | L | L | L | L L | L | L " L | L
17 18 19 2 21 22 17 18 19 2 21 233
effective charge effective charge K

Fig. 24.9 (Variation of ) The groundstate of the Helium atom is approximated with the Slater-
Jastrow wavefunction (24.48). From Fig. 24.8 the optimized value of 3 = 0.15 is taken, o = 1/2.
Each point represents an average over 107 samples. Left The energy minimum of —2.885 is found
at £ = 1.91. Right the standard deviation has a minimum value of 0.33 at xk = 1.98

-2.86 — T T — T T — — -2.86
0=0.38 B=0.18 | | 0=0.38 k=1.85 | | B=0.18 x=1.85
-2.87 - 1 - -1-2.87
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=
> -2.88 -2.88
20
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=
o
-2.89 -2.89
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_2'%.7 1.8 1.9 2 0 0.1 0.2 0.2 0.3 0.4 0.52'9

Fig. 24.10 (Variation of all parameters) The groundstate of the Helium atom is approximated with
the Slater-Jastrow wavefunction (24.48). Variation of all three parameters gives a lowest energy of
—2.891 fora = 0.38, 5 =0.18, x = 1.85

slightly smaller value of —2.891 with a standard variation of o = 0.36 (Fig.24.10).
More sophisticated trial wavefunctions reproduce the exact value of —2.903724 even
more accurately [336, 337].

24.1.3 The Hydrogen Molecule H;

The Helium atom can be considered as the limiting case of the H, molecule for
zero distance (neglecting nuclear Coulomb repulsion). At finite distance R the one-
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electron factors of the wavefunction have to be symmetrized.” We use a trial function
(we omit the singlet spin function and do not normalize the wavefunction)

Y = Cloa(r)ep(r2) + op(r)par2)] + (1 = C) [@a(r)pa(r2) + @p(r1)ep(r2)]
= Cyp + (1 — O)jonic (24.50)

which combines covalent and ionic configurations
Yve = (a(r)es(r2) + op(r)pa(r2)) (24.51)

Yionic = (Pa(r1)@a(r2) + @p(ri)ep(r)) (24.52)

and includes as special cases

e the Heitler-London or valence-bond ansatz (C = 1) ¥yp
e the Hund-Mulliken-Bloch or molecular orbital method where the symmetric MO
is doubly occupied (C = 0.5)

o = (@a(r) + op(r)) (a(r2) + @p(r2))
= Yy + Yionic (24.53)

e the Heitler-London method augmented by ionic contributions C = (1 4+ \)~!

Y = Yyvp + Mionic (24.54)

e the MCSCEF ansatz which mixes two determinants (C = 1 — Cy)

Y =Yy5 + Catyo
= (pa(ry) + @p(r1) (pa(r2) + ©p(r2)) + Cq (pa(r1) — wp(r1)) (Pa(r2) — pp(r2))
= (1 = Cpvvp + (1 4+ C)¥ionic- (24.55)

The molecular orbital method corresponds to the Hartree—Fock method which is
very popular in molecular physics. At large distance it fails to describe two separate
hydrogen atoms with an energy of —1 au properly. In the bonding region it is close
to the valence bond method which has the proper asymptotic limit. Both predict an
equilibrium around R = 1.6 (Fig.24.11).

To improve the results we vary the effective charge x and the configuration mixing
C (Fig.24.12). Optimization of x lowers the energy especially at small internuclear
distances where the effective charge reaches a value of 2 as for the Helium atom
(Fig.24.13). The minimum of the potential curve now is found at a much more
reasonable value of R = 1.4. Variation of the configuration mixing lowers the energy

2We consider only singlet states with antisymmetric spin part.
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energy (a.u.)

distance R (Bohr)

Fig. 24.11 (Comparison of Heitler-London and Hund-Mulliken-Bloch energies for H>) The MO
method (circles) fails to describe the asymptotic behaviour at large distances properly. In the bonding
region it is close to the VB method (squares). Both predict a minimum around R = 1.6

energy (a.u.)

distance R (Bohr)

Fig. 24.12 (Optimization of effective charge « and configuration mixing C) Starting from the MO
energy (black circles) optimization of  (red squares) and C (blue diamonds) lower the energy
considerably and shift the potential minimum from 1.6 to 1.4 Bohr (see Problem 24.3)

mostly at larger distances where the proper limit is now obtained. For our computer
experiment (Problem 24.3) we include a Jastrow factor into the trial function

w — {C [e—Kr]“—KJ'z[, + e—nrlb—&rz,,] + (1 _ C) [e—,k;rla—nrz“ + e—f;r”,—mqb]}

ar1o
s 24.56
Xexp[l-l-ﬂrlz] ( )

and vary , 4 and C to minimize the expectation value of the local energy
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Fig. 24.13 (Optimized values of x and C) The effective charge (squares) approaches k = 2 at very
short distances corresponding to the He atom. Configuration mixing (circles) is most important
in the bonding region. At large distances the valence bond wavefunction (C = 1) provides the
lowest energy. At very small distances the two configurations become equivalent making the mixing
meaningless as R — 0

1 20 1 1 1 1 28 , o
Elocz_ 1__2 - = — = — _3—5_—4
ri2 u I'a b I2a 2p u u
L [i L. (rﬁ _ 2) (ry — m} R
Ta r2p Ia b 2
e [i L e (m _ 2) (r — rz)} R
b Ta u I'1b "2a 2

K R RO [T r rr—r
+(1_C)[_+_+_2(ﬂ_ﬁ)M
Ia "2a u Ia "2a 2

L0 [i LA (r;b _ r_b) u] eria i nr s 1.
AT p u T 2p 2
(24.57)

i| earlz/ufnrl,lfﬁrmwfl

In the bonding region the energy is lowered by further 0.01 au with a minimum value
of —1.16au (Fig.24.14). This effect is small as part of the correlation is already
included in the two-determinant ansatz. More sophisticated trial functions or larger
CI expansions give —1.174 a.u. quite close to the exact value [333].

24.2 Exciton-Phonon Coupling in Molecular Aggregates

In this section we simulate excitons in a molecular aggregate which are coupled to
internal vibrations of the molecular units. Molecular aggregates are of considerable
interest for energy transfer in artificial [338] and biological systems [339]. Even
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Fig. 24.14 (Optimization of

the Slater-Jastrow -1
wavefunction for H»)
Optimization of the Jastrow
factor lowers the energy by
further 0.01 au (triangles).
Circles show the MO energy,
squares the MO energy with
optimized exponent x and
diamonds the optimized
MCSCEF energies as in
Fig.24.13 -1L15F 7

-1.05

energy (a.u.)

-1.1

L L | L | L E
1 1.2 14 1.6 1.8 2
distance R (Bohr)

simple trial functions involve a large number of parameters which have to be opti-
mized and require efficient strategies to minimize the energy. We consider a finite
periodic system like in the light harvesting complex of photosynthesis. An optical
excitation on the n-th molecule is denoted by the state |n >. It can be transferred to
the neighboring molecules by the excitonic coupling V and is coupled to the vibra-
tional coordinate g,. (For simplicity, we consider only one internal vibration per
molecule). The model Hamiltonian reads in dimensionless units (periodic b.c. imply
that 0 >= [N >and [N+ 1 >= |1 >)

H=Z|m>Hmn<n|

mn

A2 19 1 ol
=7+; —Ea—q%-',-iqﬁ +Z|n>)\qn<n|+|n>V<n+l|+\n>V<n—l|.
(24.58)

n=1

Due to the N-fold degeneracy of the excited states, a simple Born-Oppenheimer
wavefunction is not adequate. Instead we consider a sum of N Born-Oppenheimer
products

W =>"|n> (g, ...qn) (24.59)

We use the variational principle to approximate the lowest eigenstate. Obviously,
the number of variational parameters will rapidly increase with the system size. Even
if we introduce only one parameter for each unit, e.q. a shift of the potential minimum,
this requires N> parameters for the aggregate.

The Hamiltonian (24.58) can be brought to a more convenient form by a unitary
transformation with
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S=>"In>G"<nl (24.60)

where the translation operator G transforms the nuclear coordinates according to
-1
Gq,.G™" = qup1. (24.61)

The transformed Hamiltonian then reads

A2 19> 1 !
:——i—z + qn + Ao+ In>VG<n+1|+|n>VG " <n-—1|.
n

2 20q2
(24.62)
Delocalized exciton states
1 .
k>=— n> (24.63)
P>
transform the Hamiltonian into N independent exciton modes
H=Y"|k>H <k| (24.64)
k
with
H, —A2+Z L& +1 + Ao + VekG + ve kG, (24.65)
T2 T &\ T2ag T 2t) T ‘

Hence, we conclude that the eigenfunctions of the Hamiltonian A have the general
form

1 .
= ﬁ Zelk”m > G"d;

where @y is an eigenfunction of Hj and the number of parameters has been reduced
by a factor of N (since for each k, only one function @ is involved).

In the following we study the lowest exciton state, which for V < 0 is the lowest
eigenfunction3 for k = 0. Hence, the wavefunction of interest has the form

1
=—> n>G"® (24.66)
7 2

and can be chosen real valued.

3This is the case of the so called J-aggregates [338] for which the lowest exciton state is strongly
allowed.
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24.2.1 Molecular Dimer

To begin with, let us consider a dimer (N = 2) consisting of two identical molecules
in a symmetric arrangement. The model Hamiltonian reads in matrix form

1 18 [) 241
H=———2———2+ Z(QI+)\) +2q - lV ) (2467)
207 20¢? 14 291 T 3@+ N)
and can be considerably simplified by introducing delocalized vibrations
91+ g2
g+ = (24.68)
+ 5
which separates the symmetric mode ¢
1R A 1P %(q—+4)2 v
H:(—202+2(q++\/§)2)—262+ V2 : \ 2
o = O Y (),
(24.69)
The lowest eigenfunction of the symmetric oscillation is
o, =7 exp| 2 (qy + )’ (24.70)
+ 2 + \/E N
with the eigenvalue (the zero point energy)
1
Eyy = 3 (24.71)

Hence, for the dimer we may consider a simplified Hamiltonian with only one
vibration

2 [) (q+ A)Z v
i g Vﬁ %(q_%)z . (24.72)

According to (24.66) the k = 0 eigenstates have the form

1 1 1 1
V=—@|l >+—=GP2>= —d(|l > +—=P(—¢)2 >. 24.73
NG | 7 | 7 @ 7 (=9l (24.73)

For the dimer problem, the eigenstates can be calculated numerically by diago-
nalization of the Hamiltonian equation (24.72) in the basis of harmonic oscillator
states [340].
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Dressed Exciton

The simplest trial function which is well known as “dressed exciton” or “mean field”
ansatz [341, 342], uses a Gaussian representing the groundstate of a displaced (and
possibly distorted) harmonic oscillator

20\ /4 , 26\ 4
& — (—K) e Fa-+’ G — (£> e (24.74)
T ™

with the energy expectation value

1 1 K 1 A P
E AN =< WHY >= — 4+ (— 4+ =)+ —(a — —)> 4+ Ve 2" (24.75
mr (K, A) =< > 2+(8H+2)+2(0‘ ﬁ)+ e ( )

for which the first and second derivatives are easily found

OFwr =a— i — 4Vake 2 (24.76)
da V2

ag*Zp _ % - # Ve (24.77)

82;% =1+ 4Vre 2 [4ra® — 1] (24.78)

aj,f% = o AVate (24.79)

TEME _ 4y 02" [amo — 1], (24.80)

In the limit of vanishing “dressed” coupling Ve 2! 20, corresponding to the
so called self trapped state, the lowest energy is found for & = A\/~/2, K =1/2

min Eyr (Ve 2 5 0) = 1 (24.81)

which is the zero point energy of the two dimer modes. In the limit of vanishing
exciton-phonon coupling A = 0 (the fully delocalized state) the energy is minimized
fora =0, k=1/2

min Eyr(\ — 0) = V + 1. (24.82)

For the general case we apply the Newton-Raphson method (p. 124) to locate the
minimum. It is quite important to use a reasonable starting point to ensure conver-
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energy
\S

A2

Fig. 24.15 (Variational solutions for the dimer) The lowest excitation energy of the dimer Hamil-
tonian is shown as a function of the reorganization energy A2 /2. The mean field ansatz (red curves)
predicts a sharp transition to the self-trapped state and deviates largely for \>/2 > 5. Variation of
the exponent  improves the agreement in the transition region considerably (full red curve) as
compared to the standard treatment with fixed x = 1/2 (dashed red curve). The black curve shows
the numerically exact solution for comparison

gence to the lowest energy.* In Problem24.4, we search for an approximate min-
imum on a coarse grid first. Figure24.15 shows the calculated energy minimum
for strong excitonic coupling V = —5 as a function of \%. For small values of the
exciton-phonon coupling, the numerically exact values are reproduced quite closely.
For larger values the mean field ansatz predicts a rapid transition to a so called
self-trapped state [343] with o = \/+/2 and a very small Franck-Condon factor
F = exp(—2ka?) ~ 0 (Figs.24.16, 24.17). In this region, the deviation from the
numerical exact result is appreciable, especially if only « is varied and xk = 1/2 kept
fixed.

Solitonic Solution

In the region of large exciton-phonon coupling a simple ansatz similar to Davydov’s
soliton [344] is quite successful (Fig. 24.18) which breaks the symmetry of the system
and uses a trial function

Ysor = (P11 > +¢2|2 >) Py, 0,(q1, q2) (24.83)
with two mixing amplitudes with the constraint

=1 (24.84)

“In the transition region, the energy may converge to an unstable state, depending on the starting
point.
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Fig. 24.16 (Optimized ‘
parameters of the mean field ; r
ansatz) The optimized = o
parameters for V = —5 show =3 4b |
a sharp transition to the self @ -

— -
trapped state. Full curves %’ o
optimization of o and k. g ! ]
Dashed curves optimization g !
of o for fixed k = 1/2 oLk i i
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Fig. 24.17 (Franck-Condon
factor of the mean field
ansatz) The transition to the
self trapped state shows also
up in the Franck-Condon
factor F' = exp {—2/4,(12}
which is shown in a
semi-logarithmic plot. Full
curve optimization of « and
K. Dashed curve
optimization of « for fixed
Kk = 1/2. The dotted curve
shows the numerically exact 10 ‘ ‘ ‘ ‘ ‘ S
result for comparison
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Fig. 24.18 (Variational T ]
solutions for the dimer) The ok ]
soliton approach (dashed r 1
blue curve) works quite well I s |
for large but also for very -1+ - E
weak exciton-phonon I 1
coupling. The delocalized

soliton interpolates between
mean field and soliton results I ’
and describes the transition L /
quite well (red curve). The -3 V4
black curve shows the I
numerically exact solution
for comparison L — % — 1‘0 s
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and the same vibrational function for both states (in the self trapped region distortion
of the oscillator is not important)

1
P (@1 42) = zeT O e, (24.85)

The energy expectation value is

Esol(@lv ¥, A1, 042) =< YHY >

(a1 — N> a3 (aa — N2 a?
=¢§[1+1T+72 + ¢ 1+ZT+71 +2Voip

1 1
=143 - ©IN)? + 5 (02— O2N? + N2 4+ 2V 10, (24.86)

and for the optimized values

al = I (24.87)
it becomes
22 2v\2 v?
Eyoi(91. 92,09, 08) = 1+ X103 + 2Veor100 = 1+ - (2991902 + V) -7
(24.88)

Alternatively, using symmetrized coordinates we obtain

1 A\ 1 A 2
Esoi(¢1, 92, ap,a_) =14 = (a+ — 7) + - (af - =} - w%)) + 220303 + 2V 10

2 V2 2 V2
(24.89)
and optimum values
A
af = — (24.90)
V2
A
ol = =0t - ¢d). (249D
V2

Since |2¢1¢>| < 1, the minimum for large exciton-phonon coupling is at the bottom
of the parabola

VZ
min Egyy = 1 — >3 for |V| < \2/2 (24.92)
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whereas in the opposite case it is found for 21, = 1 (V is assumed to be negative)

)\2
minEgy =14V + T for |V| > \?/2. (24.93)

The transition between the two regions is continuous with
. 14 2
min Egy = 1 + 0 for |V| = A7/2. (24.94)

Delocalized Soliton Ansatz

Mean field and soliton ansatz can be combined by delocalizing the solitonic wave
function [345]. The energies of the trial function

Ysor = (P11 > +¢2|2 >)P (24.95)
and its mirror image

Ul = (el > +¢1|2 >)GP (24.96)
are degenerate. Hence delocalization of the trial function

Yaetsol = |1 > [p1P + 2GP] + 2 > [p2@ + 1 GP] (24.97)

is expected to lower the energy further and ensures the proper form of (24.73). Its
norm is

< Yaeisot| Waeisor >= 2(1 + 2p102F) (24.98)
with the Franck-Condon factor

F =< ®|G|® >= e "m0 _ g=2na? (24.99)
The expectation value of the Hamiltonian simplifies due to symmetry

< WaetsotH W geisor >= 297 < OH|® > 4203 < PHy® > +dp1py < PHIGP >

+2V [F 4+ 2p102] . (24.100)

Finally, varying only the antisymmetric mode, the energy is

2
- P 1 22 % - (Lp% - @%)a_/\ + 201902 I:—Zsza% + V} + VF
desol =3 Fge T2 T [+ 2p192F '

(24.101)
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In Problem 24.5 we locate the minimum energy with the steepest descent (6.2.5)
or the conjugate gradient (6.2.5) method

24.2.2 Larger Aggregates

The variational methods for the dimer can be generalized for larger systems [345].
The mean field ansatz for the lowest k = 0 state becomes

v, ! Z| G"® (24.102)
= — n > .
MF \/N -
with
N
@ = [ [n e @tor 2, (24.103)
n=1
The energy is

1
Eyr = ﬁzn: <®G"H,G"® > +V < dGP > +V < dG ' >

=< ®Hy® > +2VF
N X

2
6]
N A Y oyE 24.104
S+ 5 —a +ZH:2+ ( )

and its gradient

OEur
day,

= —Auo+a, — VFQay — oy — Qp—y)-

In Problem 24.5 we locate the minimum energy with the steepest descent (6.2.5)
or the conjugate gradient (6.2.5) method. As for the dimer, the mean field method
shows a rapid transition to the self-trapped state. The starting point is quite important
as in the vicinity of the transition the gradient based methods eventually converge to
a metastable state (Fig.24.19).

The soliton wavefunction (corresponding to Davydov’s D1 soliton) for the aggre-
gate is

Wt = D puln > @ (24.105)
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Fig. 24.19 (Variational solutions for a 10-mer) The lowest energy of a periodic 10-mer is calcu-
lated for V = —5 (see Problem 24.5). The mean field wavefunction gives (green and blue curves)
reasonable values for small values of A2 and predicts a rapid transition to the self trapped state.
Approaching the transition from below or above the calculation may end up in a metastable state
(dashed green and blue curves). The solitonic wavefunction (dashed black curve) provides lower
energies at larger values of \> and a much smoother transition to the self trapped state. The delo-
calized soliton (red curve) gives the lowest energy at all values of A2. The zero point energy has
been subtracted

with the constraint

Ser=1 (24.106)

where @ is given by (24.103). The energy is

Et =< Wootl HWo >= D 7 < PIH,|® > +V D (0aPus1 + Papu1)
n n

_N+ZO‘_5+A_2 A GRan + VD ( )
= 4 > > — . ©,0m + Zn:¢n<ﬂn+l+<ﬂn<ﬁn—l

2
N (O{n — )\903)2 )\2 4
= E-’_Z + 5 1 _Zn“(pn +V;(¢n¢n+l +Q0n§0n—1)

2 2
(24.107)

n

with the optimum displacements

a’ = g2 (24.108)
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The energy functional becomes

N X\
Eq(pn o) = 5 + = (1 -> goﬁ) +2V D ouput (24.109)

and its gradient

8Esol
Oon

= =2 + 2V (-t + Pus1)- (24.110)

In Problem 24.5 we locate the minimum energy by varying the ¢, under the constraint
(24.106). At larger exciton-phonon coupling, the energy of the soliton wavefunction
is much lower in energy than the mean field result and the transition to the self-
trapped state is smoother. At small exciton-phonon coupling, the mean field ansatz
is lower in energy (Fig.24.19).

Similar to the dimer case, the solitonic wavefunction can be delocalized by com-
bining the N degenerate mirror images

D pun+m>G"® m=1---N (24.111)

into the trial function

1 .
Weisol = ﬁ zelk’" Z@nh/l +m>G"®

1 Kot 1 N
=— > """y, ln > G" ”¢:—Zeln|n > G" Ze "o, G,
«/ﬁz VN < .

(24.112)

From the squared norm

< Yaeisot|Waeisor >= z Onipw < PGP >= Z o Fw (24.113)

nn’ nn'

and the expectation value

1 /
< WelsotH Y deisol >= N z < @G <n+mlppHpylm' +n' > G" & >
m,n,m’ .0
! —m m+n—n’
= N Z <G (,Dan_;,_m(pn/G b >
m,n,m’,n

1
+ v >V <0G oy G H g >

m,n,m’.n’
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1 ,
+y > V<0G Moy G e >

m,n,n’

= onpw < PG"H)G " & >

n,n’'
FVD pnpw <0G > 4V > 0y < 06" o > (24.114)
n,n n,n

we obtain the energy of the k = 0O state

N N
Edelsol = E + 7

+ (z @n‘pn’% |:_>\(an’ + CVn’fn) + Zamam+n’n:| Fn’fn

—1
+V D" onpw (Foronrr + Fn’nl) (Z wnsoan,,nf) (24.115)

with the Franck-Condon factors

Fi =< ®GKD >= e~ Znn—ame)/4 _ o= 2 (0 —nn)/2 (24.116)

The results for longer aggregates are qualitatively similar to the dimer. The delo-
calized soliton interpolates between mean field and soliton wave functions and shows
a smooth transition (Fig.24.19).

Problems

In the first three computer experiments, we use the variational quantum Monte Carlo

method to calculate the groundstate energy. The Metropolis algorithm with N, walk-

ers is used to evaluate the integral

< Y HY, > ()
UeH Y, > /d3 0P o

BB = > " ) R

Adjust the maximum trial step to obtain an acceptance ration of about 1 and study
the influence of the number of walkers on the statistical error.
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Problem 24.1

Optimize the effective nuclear charge « for the hydrogen molecular ion H2+ as a
function of R and determine the equilibrium bond length. The trial function has the
form

3 3
K K
—KFq —KFp
Yiar = " [ e
™ ™

Problem 24.2

For the Helium atom we use a trial wavefunction of the Slater-Jastrow type
ST —RI; r r 1
Vit = € 1eT e/ (17 mﬁ M @=-1@ L)

to find the optimum parameters «, 3, k.
Problem 24.3

In this computer experiment we study the hydrogen molecule H,. The trial function
has the form

Ynial = {C [efmlrmz,, + efnr”,fm'za] e [efwlrmzﬂ + efm‘];,fnrz;,]}
arp
X exp[—l +ﬂr12] .
Optimize the parameters x, 3, C as a function of R and determine the equilibrium
bond length.
Problem 24.4

In this computer experiment we simulate excitons in a molecular dimer coupled to
molecular vibrations. The energy of the lowest exciton state is calculated with the
dressed exciton trial function including a frequency change of the vibration

1 26\ V4 1 20\ /4
Virial = Ell > (;) e TRt 4 %IZ > (;) e g~

The parameters «, « are optimized with the Newton-Raphson method. Vary the exci-
ton coupling V and the reorganization energy A\?/2 and compare with the numerically
exact values.

Problem 24.5

In this computer experiment we simulate excitons in a molecular aggregate coupled
to molecular vibrations. The energy of the lowest exciton state is calculated with
different kinds of trial functions
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e the dressed exciton

N
1 2
Uyp = — z n > G" I I a~V4e=(@ntan/2
vN = 1

e the soliton

N

—1/4  —(gu+an)?/2

Vot = 3 uln > [ [ Ve tarons
n n=1

e the delocalized soliton

N
l — — )2
Yielsol = Wi E E opln+m > G™ I I o VAa—@tan?/2.
m n =1

The system size can be varied from a dimer (N=2) up to chains of 100 molecules.
The N equilibrium shifts «,, and the N excitonic amplitudes ¢, are optimized with
the methods of steepest descent or conjugate gradients. The optimized parameters
are shown graphically. Vary the exciton coupling V' and the reorganization energy
A?/2 and study the transition from a delocalized to a localized state. Compare the
different trial functions.



Appendix A: Performing the Computer
Experiments

The computer experiments are realized as Java programs which can be run on any
platform if a Java runtime environment (JRE) is installed. They are written in a
C-like fashion which improves the readability for readers who are not so familiar
with object oriented programming. The source code can be studied most conveniently
with the netbeans environment which is open source and allows quick generation of
graphical user interfaces. The screenshot in Fig. A.1 shows an example.

After downloading and unzipping the zipped file from extras.springer.com you
have two options.

Run a Program Directly

Open the directory CP-examples in your file manager. If the JRE is installed properly
you can start any one of the programs by simply clicking onto it. Under Linux, you
can alternatively start it in a console window with e.g.

java -jar CPexample.jar

Figure A.2 shows a screenshot from computer exercise 23.4 (ladder model for expo-
nential decay).

Open a Program with the Netbeans Environment

If you have the netbeans environment installed, you can import any of the pro-
grams as a separate project by opening the corresponding folder in the directory
CP-examples/NBprojects/. You may have a look at the source code and compile and
run it

© Springer International Publishing AG 2017 605
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gw qmladderl7 - NetBeans IDE 8.0.2 e @|
Eile Edit View Navigat Source Refacto Run Debug Profile Tear Tools Windov Help Q- !
iz : |
o . .
AEES| D@ ol HQ- T B P-B-B- |
Bﬂau]ﬁmum x NewClass java x _j @ :
[Source ] oesion | wstory | @ 18- 81 - 'Q'E--S'@EL PR A 08 Y 8|
294 void rk4(double t) ={m
295 ¢ { int i; i
296 grad(Realc, ImagC, RealF1, ImagFl, t);
207 advance(RealC, ImagC, RealF1, ImagF1l, RealC2, ImagC2, tstep*0.5);
298 grad(Realc2, ImagC2, RealF2, ImagF2, t+tstep*0.5); L
299 advance(RealC, ImagC, RealF2, ImagF2, RealCs2, ImagC3, tstep™0.5);
300 grad(RealC2, ImagC3, RealF3, ImagF23, t+tstep*d.5);
301 advance(RealcC, ImagC, RealF2, ImagF3, RealCd, ImagC4, tstep);
302 grad(RealCd, ImagC4, RealF4, ImagFd, t+tstep);
303
304 for(i=0; i<nstates; i++)
305
306
307 RealC[i]=RealC[i]+tstep*(RealF1[i]+2.0*RealF2[i]+2.0*RealF3[i]+RealF
308 ImagC[i]=ImagC[i]+tstep*(ImagF1l[i]+2.0*ImagF2[i]+2. 0*ImagF3[1i]+ImagF
309
310 } B
311 =]
312 } il
313 =
314 @ public class myPanel extends javax.swing.JPanel{
315
316 int iye,iyl,1,1ix0,ix1,11;
317 void iterate()
318 © {
319
320 } =
321
public void paintComponent(Graphics g)
323 g { double t; int 1y2,1itick; =)
324 Graphics2D g2=(Graphics2D) g; -
[l 1i ] I»]
@ @ 1 |ws

Fig. A.1 Screenshot of the source code
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Fig. A.2 Screenshot of computer experiment 23.4




Appendix B: Methods and Algorithms

Purpose Method Comments Pages

Interpolation Lagrange polynomial  |[Explicit form, easy to evaluate |19
IBarycentric Lagrange  |For evaluation at many points (19
jpolynomial
INewton’s divided INew points added easily 21
differences
INeville method IFor evaluation at one point 22
Spline interpolation Smoother, less oscillatory 22
IRational interpolation ~ [Smoother, less oscillatory, 28, 32

often less coefficients necessary

IPade approximation Often better than Taylor series |29
Barycentric rational [Easy to evaluate 30
iinterpolation
Rational interpolation  [Alternative to splines, 34
without poles analytical
Multivariate IMultidimensional 35
iinterpolation
[Trigonometric IPeriodic functions 132
iinterpolation

Differentiation One-sided difference ILow error order 39
quotient
Central difference Higher error order 41
quotient
[Extrapolation High accuracy 41
Higher derivatives [Finite difference methods 43
Partial derivatives [Finite difference methods 45

© Springer International Publishing AG 2017
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Purpose Method Comments Pages
Integration INewton-Cotes formulas [Equally spaced points 49

[Trapezoidal rule Simple, closed interval 49
Midpoint rule Simple, open interval 50
Simpson’s rule IMore accurate 49
IComposite IFor larger intervals 50
INewton-Cotes rules
[Extrapolation IHigh accuracy 51
(Romberg)
Clenshaw-Curtis Suitable for adaptive and |53
expressions imultidimensional
iquadrature
Gaussian integration High accuracy if 53
ipolynomial approximation
[possible
Monte Carlo integration [High dimensional integrals [202
Linear equations Gaussian elimination  [Standard method for linear |64
(LU reduction) lequations and matrix
inversion
QR decomposition INumerically more stable 69
[terative solution ILarge sparse systems 78
Richardson iteration Simplest iterative method |79
Uacobi relaxation [terative matrix-splitting 80
imethod, converges for
diagonally dominant
imatrices, parallel
icomputation possible
Gauss-Seidel relaxation [[terative matrix-splitting 81
method, converges for
symmetric positive definite
or diagonal dominant
imatrices, no extra storage
Chessboard (black-red) [Two independent subgrids, {402
lespecially for Poisson
lequation
IDamping and Speeds up convergence for |81
Successive [proper relaxation parameter

lover-relaxation
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Purpose Method Comments Pages
IMultigrid method [Fast convergence but more 402
lcomplicated
IConjugate gradients Krylov space method for 86
method (CG) symmetric positive definite
imatrices, preconditioning often
necessary
General minimum [Krylov space method for 89
residual method Inonsymmetric systems
(GMRES)
special LU decomposition [Tridiagonal linear equations 75
ISherman-Morrison Cyclic tridiagonal systems 77
formula
Root finding Bisection IReliable but slow continuous 98
functions
IRegula falsi (false Speed and robustness between (99
position) bisection and interpolation
INewton-Raphson Continuous derivative necessary, (100
lconverges fast if starting point is
close to a root
Interpolation (secant) INo derivative necessary, but 101
slower than Newton
[nverse interpolation IMainly used by combined 102
imethods
IDekker’s combined Combination of bisection and 106
method secant method
IBrent’s combined method |[Combination of bisection, secant, {107
and quadratic inverse
interpolation methods, very
[popular
IChandrupatla’s combined |Uses quadratic interpolation 109
imethod whenever possible, faster than
IBrent’s method, especially for
higher order roots
Multidimensional root  [Newton-Raphson INeeds full Hessian 124
finding
Quasi-Newton (Broyden) [Hessian not needed, no matrix 125
linversion
Function Minimization [Ternary search INo gradient needed, very simple, |115
for unimodal functions
(Golden section search [Faster than ternary search but 116

(Brent)

imore complicated
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Purpose Method Comments Pages
Multidimensional ISteepest descent Simple but slow 122
minimization

IConjugate gradients [Faster than steepest descent 124
INewton-Raphson [Fast, if starting point close to 124
iminimum, needs full Hessian
(Quasi-Newton (BFGS, [Hessian not needed, very popular {125
IDFP)
Fourier transformation |Gortzel’s algorithm [Efficient if only some Fourier 136
lcomponents are needed
[Fast Fourier transform IMuch faster than direct discrete  |138
IFourier transform
Time-Frequency Short Time Fourier Constant resolution for all 145
Analysis [Transform (STFT) frequencies, often used for audio
signals
Gabor transform STFT with Gaussian window 156
represents signal by elementary
signals localized in time and
frequency
IDiscrete STFT IReduced redundancy, still 153
invertible
IContinuous Wavelet Constant relative frequency 158
transform resolution, better time resolution
for high frequencies,very time
lconsuming convolution integral
Discrete Wavelet [Uses orthogonal or biorthogonal
Transform wavelets, fast scalar product
Multiresolution analysis [Represents a signal by a basic 164
approximation and a series of
details with increasing resolution
[Fast wavelet transform Recursive filtering, very fast 178
Random numbers Linear congruent Simple pseudo-random number (197
imapping (LC) generator
(Xorshift [Fast, maximum possible period |197
Multiply with carry Similar to LC but uses a varying (198
(MWC) carry
IComplementary multiply [Improves MWC, passes many 199

with carry (CMWC)

tests
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Purpose IMethod Comments Pages
IRN with given distribution [Inverse of cumulative distribution {199
ffunction needed
IRandom points on unit Random directions 200
sphere
IGaussian RN (Box-Muller) |Gaussian random numbers 201
Thermodynamic Simple sampling [nefficient 206
average
[mportance sampling Samples preferentially important [207
lconfigurations
IMetropolis algorithm Generates configurations 207
according to a canonical
distribution
Eigenvalue problems |Direct solution Only for very small dimension 214
[Tridiagonal matrices [Explicit solutions for some 217
special tridiagonal matrices
Jacobi Simple but not very efficient 214
[Power iteration IFinds dominant eigenvector 225
QL and QR [Efficient power iteration method [228
for not too large matrices,
lespecially in combination with
tridiagonalization by
IHouseholder transformations
ILanczos [terative method for very large  [230
matrices or if only a few
leigenvalues are needed
Singular value Generalization for arbitrary 242
decomposition (SVD) imatrices
Data fitting ILeast square fit IFit a model function to a set of ~ [236
data
ILinear least square fit with [Simple but less accurate 237
Inormal equations
ILinear fit with Better numerical stability 239
lorthogonalisation
ILinear fit with SVD IExpensive but more reliable, also [248
for rank deficient matrices
ILow rank matrix IData compression, total linear 245

lapproximation

least squares
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Purpose Method Comments Pages
Discretization IMethod of lines Continuous time, discretized 261

space

[Eigenvector expansion

[Finite differences Simplest discretization, uniform 259
erids

Finite volumes Partial differential equations with [265
a divergence term (conservation
laws), flux conservative, allows
unstructured meshes and
discontinuous material
[parameters

Finite elements \Very flexible and general 277
discretization method but also
imore complicated

ISpectral methods IExpansion with global basis 273
ffunctions, mostly polynomials
and Fourier sums, less expensive
than finite elements but not as
accurate for discontinuous
imaterial parameters and
lcomplicated geometries

Dual grid IFor finite volumes 265, 409

Weighted residuals General method to determine the [270
lexpansion coefficients

IPoint collocation Simplest criterion, often used for 271
nonlinear problems and spectral
imethods

ISub-domains IMore general than finite volumes [271

[Least square IPopular for computational fluid [272
[dynamics and electrodynamics

(Galerkin IMost widely used criterion, leads [273
often to symmetric matrices

[Fourier pseudo-spectral  [Very useful whenever a Laplacian 273

imethod is involved, reduces dispersion

IBoundary elements lIf the Green’s function is 286

available




Appendix B: Methods and Algorithms

615

Purpose

IMethod

Comments

Pages

Time evolution

[Explicit forward Euler

ILow error order and unstable,
mainly used as predictor step

292

Implicit backward Euler

ILow error order but stable, used for
stiff problems and as corrector step

295

order time derivative

IImproved Euler (Heun,  [Higher error order 296
predictor-corrector)
INordsieck Implicit method, has been used for [298
predictor-corrector molecular dynamics
Gear predictor-corrector [Optimized for molecular dynamics ({300
[Explicit Runge Kutta General and robust methods, easy 301
(2nd, 3rd, 4th) step size and quality control
[Extrapolation \Very accurate and very slow 305
(Gragg-Bulirsch-Stoer)
[Explicit Adams-Bashforth [High error order but not 306
self-starting, for smooth functions,
can be used as predictor
Implicit Adams-Moulton |Better stability than explicit 306
method, can be used as corrector
IBackward differentiation |Implicit, especially for stiff 307
(Gear) [problems
ILinear multistep General class, includes 309
predictor-corrector /Adams-Bashforth-Moulton and
Gear methods
\Verlet integration Symplectic, time reversible, for 310
molecular dynamics
Position Verlet ILess popular 312
\Velocity Verlet Often used 313
Stoermer- Verlet lIf velocities are not needed 313
IBeeman’s method Velocities more accurate than for 315
Stoermer-Verlet
ILeapfrog Simple but two different grids 317,317,471
(Crank-Nicolson Implicit, stable, diffusion and 486, 474
Schroedinger equation
IFTBS, Lax-Friedrich simple methods for advection 434, 436
ILax-Wendroff IHyperbolic differential equations {472
(Taylor-Galerkin highly accurate for advection 449
ILax-Wendroff
[Two-step IDifferential equation with second 464
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Purpose Method IComments IPages
Reduction to a first order  |[Derivatives treated as additional 467
equation variables
(Two-variable [Transforms wave equation into a 470
system of two first order
lequations

Split operator IApproximates an operator by a 490, 311,
product 533

Unitary time evolution  [Rational approximation [Implicit,unitary 526
Second order differencing  [Explicit, not exactly unitary 530
Split operator Fourier ILow dispersion, needs fast 533

IFourier transformation
Real space product formula [Fast but less accurate, useful for [534
wavepackets in coupled states

Rotation Reorthogonalization IRestore orthogonality of rotation [293

Imatrix

Quaternions Optimum parametrization of the (343
rotation matrix

[Euler angles INumerical singularities 343

Explicit method ILow accuracy, 335

eorthogonalization needed

Implicit method IHigher accuracy, orthogonal 338
transformation
Molecular dynamics Force field gradients INeeded for molecular dynamics (361
Normal mode analysis Small amplitude motion around 364
an equilibrium

Behrendsen thermostat Simple method to control 371
temperature

Langevin dynamics IBrownian motion 395

Many body quantum Variational Quantum (Calculates energy for non 205, 577

systems Monte-Carlo method separable trial wavefunctions

(VQMC)
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Angular velocity, 328-330
Approximation, 165, 179
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Atomic systems, 577
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Auto-correlation, 396
Average extension, 395
Average of measurements, 195
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Backward difference, 39, 436
Backward differentiation, 308
Backward substitution, 66
Ballistic motion, 376
Beeman, 315
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Bicubic spline interpolation, 38
Bifurcation, 499

Bifurcation diagram, 500
Bilinear interpolation, 35, 38
Binomial distribution, 194
Bio-molecules, 411
Biopolymer, 389
Biorthogonal, 157

Birth rate, 503

Bisection, 98

Bloch equations, 559, 561
Bloch vector, 557
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Bond angle, 353

Bond length, 352

Boundary conditions, 256
Boundary element, 413, 420, 423
Boundary element method, 286
Boundary potential, 416
Boundary value problems, 256
Box Muller, 201

Brent, 107

Brownian motion, 376, 385, 395, 397
Broyden, 114

BTBS, 444

C

Calculation of 7, 202
Carrying capacity, 498, 507
Cartesian coordinates, 352
Cavity, 413, 418, 421, 422
Cayley—Klein, 343, 344
Central difference quotient, 41
Central limit theorem, 193, 210, 386, 391
CFL condition, 434, 439
Chain, 389

Chandrupatla, 109

Chaotic behavior, 500
Characteristic polynomial, 217
Charged sphere, 403, 408, 413
Chebysheyv, 54

Chemical reactions, 509
Chessboard method, 402
Circular orbit, 293, 318
Clenshaw—Curtis, 53
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Collisions, 376, 395, 554
Composite midpoint rule, 51
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Composite Simpson’s rule, 51
Composite trapezoidal rule, 51
Computer experiments, 605
Concentration, 479

Condition number, 93
Configuration integral, 205
Conjugate gradients, 86, 124
Conservation law, 257, 427, 445
Conservative schemes, 447
Continuity equation, 428, 452
Continuous logistic model, 502
Control parameter, 500
Control volumes, 265
Coordinate system, 325
Correlation coefficient, 193
Coulomb interaction, 357
Courant, 437

Courant number, 464
Covalent, 587

Covariance matrix, 193

Crank—Nicolson, 444, 445, 474, 486, 529

Critical temperature, 380
Crossing point, 553
Cubic spline, 25, 37

Cumulative probability distribution, 187

Cusp condition, 579
Cyclic tridiagonal, 77, 221

D

D’Alembert’s, 429

Damped string, 477
Damping, 376, 469, 573
Data fitting, 235

Data reconstruction, 160
Davydov, 594

Debye length, 413

Dekker, 106

Density matrix, 291, 518, 555
Density of states, 550
Detailed balance, 207
Details, 176, 179
Determinant, 337

Dielectric medium, 400, 408
Differential equations, 256
Differentiation matrix, 218
Diffusion equation, 491
Diffusive motion, 376
Diffusive population dynamics, 511
Dihedral angle, 353

Dimer, 592

Direction set, 122
Discontinuity, 416

Discontinuous ¢, 407
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Discrete Fourier transformation, 130, 141,

155,273
Discrete wavelet transform, 164
Discretization, 256
Disorder, 234
Dispersion, 433, 458, 462, 464
Divided differences, 21
Dressed exciton, 593
Dual grid, 266

E

Effective coupling, 549
Effective force constant, 395
Eigenvalue, 213

Eigenvalue problem, 576
Eigenvector expansion, 262, 461
Electric field, 348

Electrolyte, 411

Electron correlation, 577

Electron-electron interaction, 582, 583

Electrostatics, 399

Elliptical differential equation, 257

Elliptic coordinates, 579, 581
Elongation, 465

End to end distance, 390
Energy function, 210
Ensemble average, 520
Equations of motion, 289
Equilibria, 208, 501

Error accumulation, 315
Error function, 192

Error of addition, 9

Error of multiplication, 10
Error propagation, 10

Euler, 433

Euler angles, 342
Euler—McLaurin expansion, 51
Euler parameters, 345
Euler’s equations, 337, 341
Expectation value, 189

Explicit Euler method, 292, 294, 335, 337,

483, 526
Exponential decay, 548, 550, 572
Exponential distribution, 200
Exponent overflow, 5
Exponent underflow, 5
Extrapolation, 41, 51, 305

F
Fair die, 190, 200
Fast Fourier transformation, 138
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Fast wavelet transform, 178 Gradients, 358
Few-State systems, 537 Gradient vector, 121
Filter, 179, 181 Gram-Schmidt, 69, 89
Filter function, 137 Green'’s theorem, 420
Finite differences, 39, 259 Grid, 290

Finite elements, 277 Groundstate energy, 576
Finite volumes, 265, 445 Gyration radius, 392
Fixed point equation, 499 Gyration tensor, 392, 397

Fixed points, 494
Fletcher-Rieves, 124

Floating point numbers, 3 H

Floating point operations, 7 Haar wavelet, 172, 180
Fluctuating force, 395 Hadamard gate, 571

Fluid, 427 Hamilton operator, 539
Flux, 268, 447, 479 Hamming, 147, 154

Force, 395, 398 Hann, 147, 154

Force extension relation, 398 Harmonic approximation, 364
Force field, 351, 355 Harmonic potential, 397
Forward difference, 39, 435 Heitler-London, 587
Fourier analysis, 145 Helium atom, 582

Fourier transformation, 462 Helium ion, 579

Free energy, 395 Hessian, 121, 125, 367
Freely jointed chain, 389, 393 Heun, 297, 302

Free precession, 562 Higher derivatives, 44

Free rotor, 341 High pass, 181

Friction coefficient, 396 Hilbert matrix, 95

Friction force, 395 Hilbert space, 519
Frobenius matrix, 65 Histogram, 188

FTBS, 434, 441, 443, 448 Holling, 505

FTCS, 260, 436, 441 Holling-Tanner model, 506
Functional response, 505 Hookean spring, 393-395, 398

Householder, 71, 223
Hund-Mulliken-Bloch, 587
G Hydrogen molecule, 586
Gabor, 159 Hyperbolic differential equation, 257
Gabor expansion, 156
Gabor transform, 158

Galerkin, 273, 282, 576 |

Gaussian distribution, 192, 201, 387 Implicit Euler method, 295
Gaussian elimination, 64 Implicit method, 443, 485
Gaussian integral rules, 58 Importance sampling, 207
Gaussian integration, 56 Improved Euler method, 296, 398
Gauss-Legendre, 56 Inertia, 334

Gauss—Seidel, 81, 402 Inevitable error, 12

Gauss’s theorem, 287, 408, 414 Inhomogeneity, 509

Gear, 300, 308 Initial value problem, 256
Givens, 71 Integers, 15

Global truncation error, 15 Integral equations, 414
Glycine dipeptide, 354 Integral form, 258
GMRES, 89 Interacting states, 540
Godunov’s method, 447 Interaction energy, 404, 421
Goertzel, 136 Intermediate state, 546

Golden section search, 116 Intermolecular interactions, 357
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Internal coordinates, 352
Interpolating function, 17, 133
Interpolating polynomial, 19, 22, 45
Interpolation, 17, 101

Interpolation error, 23
Intramolecular forces, 355

Inverse interpolation, 102

Inverse wavelet transformation, 181
Tonic, 587

Ising model, 378, 380, 381

Iterated functions, 494

Iterative algorithms, 12

Iterative method, 402

Iterative solution, 78

J

Jacobi, 80, 214, 402
Jacobian, 112

Jacobi determinant, 294
Jastrow, 578

Jastrow factor, 588

K
Kinetic energy, 342, 523
Krylov space, 83-85, 231

L

Ladder model, 550, 572

Lagrange, 19, 45, 48

Lanczos, 231

Landau—Zener model, 553, 573

Langevin dynamics, 395

Laplace operator, 46, 490

Larmor-frequency, 562

Laser field, 543

Lax-Friedrichs-scheme, 436, 438, 441, 443

Lax-Wendroff scheme, 438, 442, 443, 449,
472

Leapfrog, 317, 439, 442, 443, 468, 471

Least square fit, 236, 253

Least squares, 272

Legendre polynomials, 57

Lennard-Jones, 357, 370

Lennard—Jones system, 381

Linear approximation, 246

Linear equations, 64

Linear fit function, 238

Linear least square fit, 237, 248

Linear regression, 238, 241

Liouville, 310, 521

Ljapunov-exponent, 496, 500

Local energy, 580, 585

Local truncation error, 15

Logistic map, 497

Lotka—Volterra model, 503, 513
Lower triangular matrix, 67

Low pass, 181

Low rank matrix approximation, 245
LU decomposition, 68, 75

M

Machine numbers, 3, 7
Machine precision, 15
Magnetization, 380, 559
Markov chain, 207

Matrix elements, 539

Matrix inversion, 92

Matrix splitting, 80

Mean square displacement, 376
Mesh, 278

Method of lines, 261
Metropolis, 207, 378

Mexican hat, 161

Meyer wavelet, 176

Midpoint rule, 50, 296

Milne rule, 49

Minimization, 114

Minimum residual, 84

Mixed states, 518

Mobile charges, 411

Modified midpoint method, 305
Molecular collision, 349
Molecular dynamics, 351
Molecular orbital, 578, 587
Molecular systems, 577
Moments, 189

Moments of inertia, 334
Monochromatic excitation, 563
Monte-Carlo, 187, 202, 378
Morlet, 159, 161

Mortality rate, 503

Mother wavelet, 159
Multigrid, 402

Multipole expansion, 421
Multiresolutin analysis, 164
Multiresolution approximation, 165
Multistep, 306

Multivariate distribution, 192
Multivariate interpolation, 35

N
N-body system, 320
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Neumann, 521 Pivoting, 68

Neville, 22, 43 Plane wave, 458, 463, 512
Newton, 21 Point collocation method, 271
Newton—Cotes, 49 Poisson—Boltzmann-equation, 411
Newton-Raphson, 100, 111, 124, 593 Poisson equation, 399, 414

NMR, 562 Polarization, 413

Nodes, 278 Polymer, 382

Noise filter, 143 Polynomial, 19, 22, 45, 214
Nonlinear optimization, 210 Polynomial extrapolation, 306
Nonlinear systems, 494 Polynomial interpolation, 19, 37
Nordsieck, 298 Population, 497

Normal distribution, 191, 194 Population dynamics, 501
Normal equations, 237 Potential energy, 351

Normal modes, 364 Potential energy curve, 581
Nullclines, 508 Power iteration, 225

Numerical diffusion, 430 Predation, 503

Numerical errors, 7 Predator, 503

Numerical extinction, 7, 40 Predictor-corrector, 296, 298, 300, 309, 438
Numerical integration, 202 Pressure, 371

Nyquist frequency, 162, 184 Prey, 503

Principal axes, 334
Probability density, 187

(0} Pseudoinverse, 249
Observables, 522 Pseudo random numbers, 196
Occupation probability, 548 Pseudo-spectral, 523
Omelyan, 346 Pseudo-spectral method, 273
One-sided difference, 39 Pure states, 518

Onsager, 421
Open interval, 50

Optimized sample points, 53 Q
Orbit, 494 QR algorithm, 228
Orthogonality, 337 QR decomposition, 69
Orthogonalization, 69, 89 Quadrature mirror filter, 181
Orthogonal projection, 165 Quality control, 304
Orthogonal wavelets, 164 Quantum systems, 518
Orthonormal wavelet basis, 171 Quasi-Newton condition, 113, 125
Oscillating perturbation, 543 Quasi-Newton methods, 113, 125
Overlap integral, 580 Quaternion, 343, 345, 346

Qubit, 569

Qubit manipulation, 569
P
Pade, 578
Pair distance distribution, 375 R
Parabolic differential equations, 257 Rabi oscillations, 544
Pattern formation, 509 Random motion, 395
Pauli-gates, 570 Random numbers, 187, 196, 199
Pauli matrices, 343, 558 Random points, 200
Period, 496 Random walk, 385, 397
Period doubling, 500 Rational approximation, 526
Periodic orbit, 496 Reaction-Diffusion systems, 509
Phase angle, 567 Real space product formulae, 534
Phase space, 290, 294, 310 Rectangular elements, 280

Phase transition, 380 Rectangular scaling function, 169
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Recurrence, 497
Reflecting walls, 371
Regula falsi method, 99
Relaxation, 559
Relaxation parameter, 402
Reproduction rate, 497
Residual, 402

Resolution, 152
Resonance curve, 573
Resonant pulse, 566
Richardson, 79, 85
Riemann problem, 447, 453
Rigid body, 333, 334
Romberg, 51, 53
Romberg integration, 61
Root finding, 98

Roots, 97

Rosenbrock, 123, 127
Rotational motion, 325
Rotation in the complex plane, 13
Rotation matrix, 326, 335
Rotor, 334

Rotor in a field, 348
Rounding errors, 3
Runge—Kautta, 301, 540

S

Sampling theorem, 134
Scaling function, 164
Schroedinger equation, 519, 521, 522, 572
Secant method, 101

Second order differencing, 530
Self energy, 421

Self-trapped state, 598
Semiclassical, 551
Semi-discretized, 262
Sherman-Morrison formula, 77
Shifted grid, 409

Short Time Fourier Transform, 145
Signal reconstruction, 154
Simple sampling, 206
Simpson’s rule, 49, 303
Simulated annealing, 210
Singlet, 583

Singular values, 242, 243
Slater-Jastrow ansatz, 584
Soliton, 598

Solvation, 407, 408, 413, 423
Solvation energy, 423

Solvent, 421

Specific heat, 253

Spectral methods, 273

Index

Spectrogram, 151

Spin, 378

Spin flip, 568

Spin vector, 558

Spline interpolation, 24

Split operator, 311, 490, 533
Splitting methods, 454
Stability analysis, 12, 260
Standard deviation, 190
Statistical operator, 521
Steepest descent, 122

Step size control, 304
Stoermer-Verlet method, 313
Sub-domain method, 271
Subgrids, 440

Successive over-relaxation, 81
Superexchange, 545
Superposition, 518

Surface charge, 419, 421, 423
Surface element, 200, 418
Symmetric difference quotient, 41, 432
Symmetric differences, 439

T

Taylor-Galerkin scheme, 450, 451
Taylor series method, 298
Ternary search, 115
Tetrahedrons, 279

Thermal average, 521
Thermodynamic averages, 205
Thermodynamic systems, 369
Three-state system, 572
Tight-binding model, 234

Time derivatives, 259

Time evolution, 291
Transmission function, 137
Transport processes, 427
Trapezoidal rule, 49, 135

Trial function, 575, 576, 587
Trial step, 209

Trial wavefunction, 583
Triangulation, 278

Tridiagonal, 74, 217, 465, 473, 483, 528
Trigonometric interpolation, 132
Truncation error, 14

Two variable method, 470
Two-state system, 292, 540, 543, 555, 572
Two-step method, 464

U
Ultra-hyperbolic differential equation, 257
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Unimodal, 115

Unitary transformation, 71
Update matrix, 113

Upper triangular matrix, 66
Upwind scheme, 430, 448

\%

Valence-bond, 587

Van der Waals, 357
Variable ¢, 406

Variance, 190, 576
Variational principle, 575
Variational quantum Monte Carlo, 205, 577
Vector model, 556
Verhulst, 497

Verlet, 310, 312, 313, 370
Vertex, 266, 279

Virial, 373

Virial coefficient, 374

W

Wave equation, 458
Wavefunction, 519, 522
Wavelet, 164, 176, 179
Wavelet analysis, 158
Wavelet synthesis, 160
Wave packet, 536, 572
Waves, 455

‘Weak form, 258

‘Weddle rule, 49

Weighted residuals, 270, 539
Weight function, 258
Windowing function, 135, 145
‘W-matrix, 328

Z
Z-matrix, 354
Z-transform, 137, 179, 182
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